P—_—f

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for information Operations and Reports
{0704-0188}, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE
24/May/2001 THESIS

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
AN OBJECT DESCRIPTION LANGUAGE FOR DISTIBUTED DISCRETE
EVENT SIMULATIONS
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER
MAJ ANDREWS HAROLD G
5e. TASK NUMBER
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSI(ES)
TUFTS UNIVERSITY

8. PERFORMING ORGANIZATION
REPORT NUMBER
CI01-75

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
THE DEPARTMENT OF THE AIR FORCE

AFIT/CIA, BLDG 125

2950 P STREET

WPAFB OH 45433

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unlimited distribution
In Accordance With AFI 35-205/AFIT Sup 1

13. SUPPLEMENTARY NOTES

14. ABSTRACT

20010720 039

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF |18. NUMBER [19a. NAME OF RESPONSIBLE PERSON
a. REPORT |b. ABSTRACT | c. THIS PAGE ABSTRACT (F?;GES :
435 19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.16

——7

An Object Description Language for Distributed

Discrete Event Simulations
by

Harold Gregory Andrews II, Major, USAF

Submitted to the Department of Electrical Engineering and Computer Science on 13 April 2001, in partial

fulfillment of the requirements for the Degree of Doctor of Philosophy of Computer Science

Abstract

Digital simulation is a useful tool for developing a better understanding of physical or hypothetical
systems. It has been used with great success since the advent of the digital computer in such varied fields
as weather prediction, planning military operations, and training. As digital computers become more

capable and network communications systems more prevalent, the notion of synergistically combining the

two to perform distributed simulation has led to some tremendous improvements in simulation speed and

fidelity.

This dissertation describes a new programming language that is useful in creating distributed discrete event
simulations without burdening simulation developers with the difficult and error-prone task of
synchronizing nodes in a distributed simulation. Developers can instead focus on specifying the behavior

of the objects in the virtual environment with little effort devoted to lower level concerns.

The language structure follows the notions of stimulus-response and completely isolates simulation object
instances from each other. Inter-object communication occurs solely through message passing. Several

example applications are described.

Thesis Advisor: Professor David W. Krumme, Associate Professor of Computer Science

Technical Supervisor: Dr. Owen L. Deutsch, Senior Member of the Technical Staff

An Object Description Language for Distributed
Discrete Event Simulations

A dissertation submitted by

Harold Gregory Andrews II, Major, USAF

MS Mathematics, University of Texas, San Antonio, 1997
MBA Management, Rensselaer Polytechnic Institute, 1992
BS Mathematics, Northeastern University, 1988
BS Computer Science, Northeastern University, 1988

Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment for the
requirements for the degree of

Doctorate of Philosophy in Computer Science

TUFTS UNIVERSITY

May 2001

© 2001 Harold Gregory Andrews II. All rights reserved

The author hereby grants to Tufts University permission to reproduce and to distribute publicly paper and
electronic copies of this dissertation document in whole or in part.

Thesis Advisor: Associate Professor David W. Krumme
Draper Technical Supervisor: Dr. Owen L. Deutsch
Thesis Committee Member: Associate Professor Anselm Blumer
Thesis Committee Member: Associate Professor Robert J. K. Jacob

ACKNOWLEDGEMENT
13 April 2001

I first and foremost acknowledge the intervention from the Almighty God who, through His divine

providence, saw fit to allow me to attend school and work on this project.

Next, I thank my wife and best friend Barbara whose love, devotion, and willingness to deal with much in
terms of caring for our children, what seems to have been more sickness than health, and my vacant stares
while I pondered some troubling technical triviality, freed me from having to fret over managing many of

our household affairs; they have indeed been in good hands.

Special thanks go also to my Tufts University thesis advisor, Professor David Krumme, and my Draper
Laboratory technical supervisor, Dr. Owen Deutsch for their help, guidance, and insight as I worked on this
dissertation and the related project. In addition, thanks to my thesis committee members Professors
Anselm Blumer and Robert Jacob for their willingness to wade through the musings contained herein, and
quiz me about them. I would also like to thank Professor Karen Panetta for her participation as an
examiner during my orals, and for the observations, comments and insights she offered; they were very

helpful.

Additional thanks go to current and former personnel at the Air Force Institute of Technology, office of
Civilian Institution Programs: Colonel Paul Copp, for fighting for me to go to school, when the Air Staff
was opposed to the idea; Majors Ralph Tolle and David Schluckebier for acting as my voice at AFIT;
Captain Rick Sutter, who suggested a novel way of dealing with administrative difficulties. Also, thanks
go to the faculty of the computer science department at the United States Air Force Academy who were

willing to take a chance on an unknown.

In no particular order I also acknowledge, and humbly thank the following for their prayers, advice,
support, and words of encouragement: my mother, Jill Andrews, for her help beyond the call of duty
during the aforementioned periods of sickness; my father, Harold Andrews, for providing me with an
environment in which I was free to explore my various interests; my mother-in-law, Veronica Vogt, for her

help, prayers, encouragement and mastery of the English language; my father-in-law, Kenneth Vogt who

iii

helped me to keep my sense of humor; my former high school math teacher, Eugene Kaczowka, who in
many ways started this ball rolling lo those many years ago; Major William Szarek, whose dedication to the
notion of service above self provided me with as a model to emulate; Majors Michael Ward and Barrie
Wheeler, for helping me to see how things really are; Lieutenant Colonel Skip Youngberg for giving me a
well deserved and much needed kick in the pants; Colonel Larry Carr and Lieutenant Colonel Richard Saint
Pierre, who provided me with counsel, wisdom, and the perspective of their experience; Robert Balusek,
Dr. John Romo, and Dr. Stephen Welstead, for their advice in matters of higher education; and to those
unmentioned by name here who through their prayers have allowed this work to come to a merciful

conclusion.

This thesis was prepared at the Charles Stark Draper Laboratory, Inc., under projects 13025 (Multi-Agent
Collaboration Services), 15052 (SOS Large Scale Analysis Capability), 18527 (C4I Laboratory Capability

Development), and 13360 (Tactical Node).

Publication of this thesis does not constitute approval by Draper or the sponsoring agency of the findings or

conclusions contained herein. It is published for the exchange and stimulation of ideas.

Harold Gregory Andrews II, Major, USAF

iv

Contents

CHAPTER 1. RATIONALE AND BACKGROUND 1
1.1, OVERVIEW ...uiiiiciieiiiessinrceaesereseetesseensesestessssensesassessensresanssnesseesensaesanssesesnesssesessaeens 1
1.2. ALTERNATIVE APPROACHES. .. ttttitieiiieereeririirersrsremesinnestssentaressstsermereeessrtssmerrmeesssesines 4

1.2.1. Full implementQlionso.ccveireveieeieieereniiesstesessuesssseesesesssseessesnesassesessessns 4
1.2.2. Modular Simulation SYSIEIMScccecuveecveeieeeriirceessvesisssstesisesasessssnsssssssesssanens 6
1.2.3. 4™ generation simulation programming langUAZESowereeevereeeereererenenn. 7
1.2.4. Distributed simulation SIARAAYASoooeuueeeecceereiiiieeciecieeeeieesccieessteresssenens 9
1.3. SODL SYSTEM DESCRIPTIONcccirirerersrsuenseraseesassunessesesssssnesssesssnasssseesassnessessessaasne 9
L4, SCOPEcutieeeeeiesiteeete e te e ste e et e e aas et esbe e e bes e st e s bessssesanasssbesstasanessasassasssaaasassseens 12

CHAPTER 2. DIGITAL SIMULATION 13
2.1, OVERVIEW ...cccoiuieriieerennresiieesessesassssesssseressansenosssnsesssnesessnnssesmeesssesssnessessassssneeraseans 13
2.2, MODELING ...ccceitrieriteeesttessaseeeseneaessssresesstessssseesessssesssnessesseasssesessessssnesessassssaessnnens 14
2.3. DIGITAL SIMULATIONceeeritteerererersssenssesseeesssnesessseessseessessnasssnesessesassessssssasasaessssenn 18

2.3.1. Continuous time SIMULALIONc.coveueeeesiresreeeeeeieesireesiessteseseeeesesaaessessesssnns 21
2.3.2. Discrete eVent SIMULALIONcoeieeevnveeeeeeeeieeieeeeineeeeeeesieeessaesaessssnassssssessessns 21
2.3.3. Distributed discrete event simulation (DDES)uoouvueeeivieeeiceiiereeereeeenans 23

CHAPTER 3. OVERVIEW OF OPTIMISTIC SYNCHRONIZATIONccccevereneee 27
3.1, OVERVIEWoieiiieteissceseseriseesesnesinnesseessesssnsesesesssessntesssesessestessaesaneesssesaneesnsessans 27
3.2, STATE SAVING ...utiuiiinueereteesereeeeresesseesaseesasneseseeseseeentesataesee st eesuesaneesasessntessesaneans 30
3.3. FOSSIL COLLECTIONettvttuuuutresnsieseresesaserseseerssssssmensrsersssesssssmestsstessereresesteemeesessenssns 31
3.4. ROLLBACK (STATE RECOVERY)....uuuttieeircruriereeseareneeessansneseessssseesssssnesssssssresssssessssnns 33
3.5. GLOBAL VIRTUAL TIME COMPUTATIONccoereererurerareessarnnreeneeseseresenesssssessseessssenas 34

CHAPTER 4. SODL RUN-TIME SYSTEM ARCHITECTURE 41
4. 1. OVERVIEWoutiiiiiirreeaseesauenensesanesesesessteassessasessasansansesssesssnesaseassessssassesesseessssssssans 41
4.2. MESSAGE CONSTRUCTS.......ccetrteranterarersueraasessnseesnsnessessnsessssasassasesssnesssesensessesscesens 42

4.2.1. Message Type SPECIfierueeoieeeeeeieeecieesee e reen et raesas et essaessseeseeens 42
4.2.2. Message deStination LiSt.............oucceeieciieeeeeiieeeeieeeceeeeciteeereeeesseesessnessssssssssssses 42
4.2.3. MeSSAZE LIME SIAMP.......co..eeeeneeeeeeeeerrereeeeersiees e e seasssnesseessaesasaseseesssesssansssesas 43
4.2.4. Message tranSmiSSION flAG...........cccuuvecuereeeirereeciereceteeeiieeeesreseseseeseeressseseseeseans 43
4.2.5. MeSSAZE UACNLIfIETuonneeeeeeeeeeeeeieeieeceeeeeeeeeesteeecteecesiaeeestesesnsesssseesserenssesenens 43
4.2.6. Message data payload.................ceeeeueeeeeecieiireeeiesecieesesisesiessesssssssesasessessesnnans 43
4.2.7. MeSSAGE MEINOASooeevueeeneeacreeeeteerieescteecrreestesetaesenesssesstesseessanesssssssenseasans 44
4.3. PROCESS CONSTRUCTSceccteetermearueeseiesersnsessseeeserssmestessesssarsnsssssnsassessassstassassesssesses 44
4.3.1. ProCess HiMe SIAMPcooveeeereeeeneiresieereaesessnesessseassnsssesssessasssessssssssesssssns 45
4.3.2. Process IAERLIfIEruveueeecuiiiieierreieieesrteesesestesseesestesstesstessesssseesaesanessassnnns 45
4.3.3. PrOCeSS SUALE AALA............eueeeneeeeereeeeeeeeerireieieeessessesseeessessssssesssssesstsssnessens 45
4.3.4. PTOCESS MEIAOAScc.ueveeeeeneiaccereeieesiteessteeesssesssseseesssssseessseessassseesssesnsasssesns 46
4.3.5. PrOCESS MOGESc.cccuuveaeererecneieeeiiireciteeeeeaeeeseesessessessessessesssnessssseesssesnssesnnens 46
4.3.6. PTOCESS TOAESooeveenrereeeeeeeeciasctieeeeeesetesareesaesestesssesaseassessesessessssasssssesenns 46
4.3.7. PrOCeSS INACTIIANCEeeeeeeereeeeaeeireeeeeeeeerneeeeeiesesenesessssssssessssaneesssssssseseessssases 47
4.3.8. Fossil collection in the process iNStANCEocueceeververireeeseseseressseessessnns 47

4.4, PROCESS CONTROLLERSccoottirtrenterintiineeaessinteeseessesineesscssssessneessnsessesssseesssnesssns
A4 1. JACHLIfIET ...ttt ettt e st e s et ene e s san e senenenes
4. 4.2, SEALE QUEUE.eoueenereeirieienreeete e et et te et ee st st e e e e aressaa et e et s satesaeassesaness
4.4.3. Process controller meSSAge reCeiVeruccicreververecieriisnnscseessirenesessesasns
4.4.4. Process controller meSSAge tYANSIILIEYcccveeeeeureresressiieereersessaseesassesenes
4.4.5. ROIDACKccuveeeeiereeieeciiecrreireesierecinesitsesseeenasesseessaessseasstsassaseseesasssessnensssanses
4.4.6. FOSSIL COLLECTION.ueeeeeeeeereeeecieircieeiesciessseesesise s s stresesanesestessneeassssaasensnesnssnes

4.5. ENGINES ...ccoritirtineentiiienitentestetestessesntasesessesssssesastsetsssessasaabessnesanesasessssnnessensssesans
4.5.1. LOCAL CLOCK........ccuuoeeieeeecieiieecereeencieccteeeenessen s e s esee s seesne s rassanassre s snsnasneesnens
4.5.2. Pending message qUEUE (EVERE QUEUE)c..eeeeeeeeeeereeerieeeirnreeeeeeerssenesssenenns
4.5.3. ANLIMESSAGE QUEUEoovoueieeeeereireeceeeeeireetesneessessaeeeeseessese et eseesssaesssaesans
4.5.4. Processed MeSSAGE QUEUE.oc.cecereeerueesieierirersteeseesresanssseessessassessessses
4.5.5. OUIDUL TESSALGE QUEUEcnneeeeeeerneeeireeerrererirasireeneaestesiseesssessaseesssesssassseasssesses
4.5.6. Process CONYOILET QIT@Y............couvuueeeecreeeeireeesieseeiteeaeceeesesseesesseessssasesssssesenes
4.5.7. Fossil collection SCRedULe.................uueeieccuiniuirceeieiiieeeerenessaeesenesenesssaesssnesans
4.5.8. ENGINE MESSAZE TECEIVETcc..ueverceviirireresireereenereereesesenesessenassssesssssesassnsenensens
4.5.9. Engine mesSAZe ITANSIUIIEYc.ccvcuvrerueriririerresireriseeeessneesasnessssesssesenssssssesssens
4.5.10. Engine QdVAnCEMENL...........c.ccceereivueriveerieiuerariseesieenesssesessnessasesssesenesssnesesans
4.5. 11, ROIIDACK ..ot rae e ee s esae s s e et s e saas st e s e s v e anassnennns
4.5.12. FOSSIL COILECHION.....cocuvevceeveeneiireeesitiecctnsrsieesesssresesassssaes e sssvsssseasssesesseenasasns

4.6. ENGINE STANDoooiiiieeriirteiteneteteestestesetsesesannests st sssesenesee st sasesnsesetasnesssesonsnes
4.6.1. Idle LiSteNer INIETIACE.c..vceeeneeenieiieeieeeceer ettt seassresse s
4.6.2. EFLGINE LiSL.....ccccoveeeeeereeereierecieeeseretessisenessvesssssesssssesasseesensenesssesssassesesssassssnens
4.6.3. MeSSAZE fOTrWATAETcovuveeecveiirieiiieiieeeseecrcir e ssaeese s sta e s sae e st e e s enseeansaes
4.6.4. Local virtual time (LVT) CAICUIALOTeuueuueeeiieierierserrirrenniieecsisssnsreereesenees
4.6.5. Global virtual time (GVT) @SHIMALIOTeuuueveeveeireeerisireereireinseesscesssssesseneeesenees
4.6.6. FOSSIL COUECHION.covcceeenreerecieiirccieiecteeseaneseiteesssaee s anssessasesssasssrasanesseasssns

4.77. MESSAGE PASSING INTERFACE (MPI) ..coooiiiee ettt ee e

4.8. VIEW MANAGERc.otttieiiiiiniiiriestiint i eceas st e ss e sbssobt et e s st s saeessesssabsseneesenessonae
4.8.1. TeXt VIEW MARNAZETueeeeeeeieereeeerreneeeseeneesisessseeseserssasessessssasessnssssresasssssnsensns
4.8.2. GLUT VIEW FUAHAGETc.coneeeeeeeeneeeereeeeiieeeseseeaueessssssnaesessssnesassassssasssssssssesasannns

CHAPTER 5. SODL PARSER USAGE

S.1. OVERVIEW ...covetttierieresieieeeesresasssesesessessesunssssssstrssmssnssessssssssnsanssssssenessnssnssssensansossasees
5.1 1. CAULIONATY NLOLES ..ooeveeeeeeeeseeieeiieeeeeseseseseeesntesssesssasssassnsnasesassssesesesnassenannans
5.2, INSTALLATION ...uuuieeireiereretereensnseeeseeesersasssssscssesensasnessossersasnssssssersennsassssssesensansnosssses

5.3:4. LJODJECE ...ttt st s aa e s n b
5.3.5. /SAMPLE......ceeeeireeetie ettt e
I N N £ 7 2 T USROS
5.3.7. SEMPLALE ...ttt st sttt eraa e s r e e ra e e aaes
5.4, COMMAND LINE OPTIONSceiotterirrerererteeereresssenserseessessersssssassssesssessssessosssssssssssessesss
5.5. CONFIGURATION FILESttiiiieieeiiieeiireecieeerneecccteeeaeesssvnaesessessssseesenssesssasssssnnnsens

vi

CHAPTER 6. SODL LANGUAGE STRUCTURE 71
6.1. OVERVIEW ...couiiiiriiieetieeiniisine st s esesesseessesateste st tran e et s se e s essesanesasesenestsassenseesssaes 71
6.2. APPROACHcetiiteriertierirestesise s st et sest s nas s b san e st aesas s sb e mesab e sre et e st ameentennee 71
6.3. CONSTRUCTS ..corueeruirereririneransessastessuteaseraseesasessnsnesasesaneassaesaseessesseessanessnesasaesseesnes 72

0.3.1. MESSAZGE CONSITUCES.......cceveeeriereeereieeraiieesiiesassererassessseassssassessesseseassseesssnesans 73
0.3.2. PrOCESS COMSITUCLESovverereeeseereeracieeinsiseeseaseseesesesessesssssesssenesssstssessesssssesssseasenes 73
6.4. IMPORT DECLARATIONS ...cctiiierireueeneresreeisesstansesssseseneseseseesssessesssesssessnsssossseneeenesnes 74
6.4.1. IMpOrting SODL CONSITUCES.........ceecueerieeereeraiereriersteereseseesaseeseeesanesseseseesseesses 74
6.4.2. Importing RON-SODL filescoueoueveeineeciecrninenenreerresesiesveese s esens 75
6.5. MEMBER VARIABLE DECLARATIONSccucruteirreneeenerteerentesnesaneseseessesaessesaesassnene 76
6.5.1. BASIC AALA TYPESevveevveereeectieeeeensereecsessinessisessaesssssessessssessssesssessssessssasessssases 76
6.5.2. Extended dAt@ 1yPesSuuvveeeieveeenieiieeeiteirsetesaesesesssessssesesaesasessenssssssnssssesses 77
6.5.3. Process CONSITUCES QS AALA MEMBETSouevevveeeiiiieeeciieieeincireeseesiesssesessesssesns 78
6.5.4. A note on references and POIRLETScocovuecreeveriveererseeereeseeierisesessaaeaeeneens 80
6.6. METHOD DECLARATIONS......otiiiueiriieesereeneeeeieeseesseeeeseesssesssesenenssesesnessesessensssesnses 81
6.7. MESSAGES ...uutietrenirirerrestesteseressesstecsesanesatesatesssesatasese st asaensesasesenessasatessesnsesnesaes 82
6.7.1. System-defined message member variables................ccuueeueeveevverinicerinrinenenns 83
6.7.2. System-defined message MethOdSc.oecvevueeverceerireeesieieeessrreeesesseneans 84
6.7.3. SYStem-defined MESSAGESccccueveurereereiiirinieeierieesieeseeseseseseesssesssrsasessseenns 85
6.7.4. MesSAZe HARNALESuueeeeeeeeeeiiiraeieesieeeescneseisteesssesssaeaesstesensessssaeesasnesnns 86
6.8. PROCESSES......ciiitiitticteire e srte et eset e s e e te s ne s ne e ssnesse s ba e s e e s araesaeessbeassnessaanseensns 86
6.8.1. System-defined process member variables................c.uvcervuicreensincrierinennenns 87
6.8.2. System-defined process MetROAScoccovueeevureercinseeseeeieeiressteeresieesereseeeas 87
6.8.3. Process HARALESueeeeeeeeeeeeeceieneiieeeieeeeeseeeessaesessssessnsesesssesssnesssesssssannens 88
0.8.4. SPECIAL PTOCESSESoccueeeeeeereeeeciieseciresiseeessteesssaesssseesssateseseesssssesstesssssesnnes 89
6.9. MODE AND NODE DECLARATIONSccccuttrmtiiieraectiieeseneesieeseesosesssnessssesaseessensssessnes 89
6.9.1. MOAEScocveeaeeeeceeeeeeeeeecttaeeee st e e s caee s et e e s s saesesaneseaeeesetseassaesessaenssanenssnesans 89
0.9.2. INOUESuooeeteeeeeeeceeeeeeeeeeecee e e ctta e e e ste s e s taaseesasesaesesasesesaeesnessessaesassessasessane 90

CHAPTER 7. C++ CODE GENERATION 97

7.1. MESSAGE CONSTRUCT FILES ...ccccuttierueeeteeseresseesasessiseessersssesancesseessseessenassessansssesnes 97
7.1.1. A Simple MeSSAZE CONSITUCT.......cueeeriieeeeeaereeeeiircitee e ssee e strssetsssvesasessaeessesaneas 98
7.1.2. Message construct with user-defined methods and data members 99

7.2. PROCESS CONSTRUCT FILEScuvuetmeeieriereeeiessiemsassassrsnmsesescassssssssarsessssssssssssnsassessesas 101
7.2.1. A SIMPle PIrOCESS CONSITUCT..........ccoeeenirireircrieirenieeeretseeesestsssestessesseseesaassasens 101
7.2.2. Process constructs with data members and methodscccoveeeuevennee. 102
7.2.3. Mode and node declar@tionsueeeeeevcveecvureiiereireesieeereresseeseesseesans 104

CHAPTER 8. GLUT-BASED USER INTERFACE 111
8.1. OUTPUT CONCERNS IN AN OPTIMISTIC SIMULATORcoreverreeerrressenssnnenssesssnneseennns 111
8.2. OVERVIEW OF THE SODL/GVM SUBSYSTEMcccctrirertemerrneseasesssesssessessseesnnseens 111

8.2.1. SODL/GVM SCENE GIAPHScuneeeeneereenieeieeeeeeireeestasessessssssnesesssasssesssassesans 113
8.3. SODL/GVM USAGEceosiecrrercnieiiitenetisseesaeassseesesnesiseesansssesssssassssssssassessnsesseases 116
8.4. SODL/GVM ARCHITECTUREcccecuviriueererieereresaessssesssesssaesssesssassaseessesssseessssssssanns 118

8.4.1. SODL view controllers, the process:View.............coeeeeeerveesreerseeesivesesssseesenns 119

84.2. Messaging on the GVM Side...........cuueeouiecioeinirirerienieee st csnes st nae e 121

vii

CHAPTER 9. SODL SAMPLE PROGRAMS

9.1. SINGLE NODE TEXTUAL SIMULATIONSeetuumuereterermmennsensnsseseseesnsssssessasssessoesssasssnn

9.1.1. Simplel
9.1.2. Simple2
9.1.3. Simple3
9.1.4. Ping
9.1.5. Ringl
9.1.6. Ring2
9.1.7. Brigade2

...

...

...

...

...

...

0.2. MULTIPLE NODE TEXTUAL SIMULATIONScovtvttteereeresernensseseesersansssasssersesensnnensns

9.2.1. Relayl
9.2.2. Relay?
9.2.3. Relay3
9.2.4. Relay4
9.2.5. Relay5
9.2.6. Relay6

...

...

...

...

...

...

0.3. GLUT BASED DEMONSTRATIONS ...cuttuuuereeterreresasseseressessnnnsasssssesssssnsssesssssssnsssnnsesses

9.3.1. Bouncel
9.3.2. Bounce2
9.3.3. Brigadel
9.3.4. Hierarchy
9.3.5. Battle

CHAPTER 10. CONCLUSIONS

..

..

...

..

...

10.1. CONTRIBUTIONS OF THIS WORKceeeevuiererrrerrneerasenessssesssssesssnnessssssesesssssssanesssns
10.1.1. SODL system.................
10.1.2. Simulation Formalism...
10.1.3. Asynchronous Global Virtual Time AIGOTithI...........oevceeeeeveeenveeceeceeeeranne,

10.2. POTENTIAL FUTURE WORK

...

...

...

10.2.1. Distributed SODL TUR-1IME SYSLEMuuveeecreeeeeieeeecreeeineeeeessreeserseesesaeeesenens
10.2.2. Graphics Subsystem.......
10.2.3. User Interface................
10.2.4. Process Migration and Load Balancing................cucueeeeveeceeeceeeseecvnesvessenns
10.2.5. Analysis tools.................
10.2.6. Multiple inheritance

APPENDIX A. SODL LANGUAGE PARSER SPECIFICATION

B.2.1.
B.2.2.:
B.23.:
B.24.:
B.2.5.:

::Exception
:Exception
:Exception
:Exception
:Exception

::BadCast......

...

...

...

...

..

...

...

22CAUSALIEYETTOT ... v seecess st sre st e et e e

::Nonspecific
::RangeError

...

viii

B.2.6. SOAL: :ARTIMESSAGE......c.eeeeeeeeeeeneeteeeeeeeieesieceee et e aeseasssassesssesssssseessessnsnnens 177

B.2.7. SOAL::CLOCK ceuuvooeoanaoeeeireiiiiieeeeeeteeeeeees s e e eeee st e ettt eeseemsssaenaessasesansans 177
B.2.8. SOAL::DESSconeeeeeieeiteeeesesies e stessse et estesee et s e saesre e ssaa e s st e ssaesae s st e sennnens 179
B.2.9. SOAL::EQFIIOF c.covoeooeeeneeeiiiiieie ettt s e e e eeaeeertsseeestaseeeseesssasesetsasasesaenans 181

B.2.10. sodl::
B.2.11. sodl::
B.2.]12. sodl::
B.2.13. sodl::
B.2.14. sodl::
B.2.15. sodl::
B.2.16. sodl::
B.2.17. sodl::
B.2.18. sodl:
B.2.19. sodl:
B.2.20. sodl::
B.2.21. 50dl::ProceSSHANAIE................oooceuneeeeeeecciieeiierrereeeieeeeeeeseecssieeseenanseeseenns 205
B.2.22. sodl:
B.2.23. sodl::
B.2.24. sodl::
B.2.25. sodl::
B.2.26. sodl::
B.2.27. sodl::
B.2.28. sodl::
B.2.29. sodl::

MESSAZE ...t 196

:MessageHandle.................ccovveeeeeimeiriniecrinreesee et snee s 200
IPTOCESS ..ottt e e st 200

IPTOCEOSSMOME.c....ceaneneereeeeessreeeeeeeaerasesearasesssssessessaereessessneresessennsanens 206

SYSIEMMESSAGEooeeteeerieeeeeeeeeeeresctteeeve s et s e e sese s sesssnaseeensaenes 210
TextVIEWMANQAGETc...eeveceeeeeceeeeeireeeeeeeeeaiseeessieeesinseeessaesetseenssneens 210

B.2.30. SOAL::TTACEcneoeeeeneeeeeeieeeeceecesee s reeeve s e st e s e e s eesae s ae e e saensasnes 212
B.2.31. S0AL::UPAAIEGVTuuotieeeeeeeereieeeecreesieeeesteeeeesssesessesessesessesssssesssssnsassnsnens 214
B.2.32. 50dL::VIEWMANAGETocooeieeirreeceseeeeteesieesteseessaessnesst s e sne st ananenns 215
B.2.33. SODL run-time system items not associated with a specific class............... 215
B.3. SODL - GLUT INTERFACEcccsttitrruertenteetessinsseeastesaressesssasnsssssesssesssessesssessnssns 221
B.3.1. message:AddNoOde..................oueeecoioccnieieiaciieceie et ses e et sae s s s nns 222
B.3.2. message:AddNOde2DDooucumeeeeeeeceaeseeeereeeceeeessesseesssesssesssesesesesssenns 222
B.3.3. message:AddNOAe3Dcuucueeceeeccineceieeseieeceeeseesssresssesssssseseseessssanns 222
B.3.4. message:AddSRaAPe..............oeeeeeeeceeseecveeieeeeeeiaeeste e esseeste et e s enen 223
B.3.5. message:AddShape2D..................ieivrviecreeieeesenseseseseeessesssesisssenesesnees 223
B.3.6. message:AddSRape3D.............uoiveeciisieiesiesteciesesstscaesteee s ina st stasaeenees 224
B.3.7. message:AddSUbordinate...............u..ueecoeereecineeeeereececsreeeeeeeereniseeneeeennes 224
B.3.8. meSSAZE:AAAVETTEXeueeoecrireireeeeeeiiecrereeeeesee s esase s s e sssesss e saeanasnes 225
B.3.9. message:AddVertex2D..........oeecceeereeieeeeeeeeescesssessesessessssseessessssssnensens 225
B.3.10. message:AddVertex3D ... meceeeeeeceieeceeeeeieeseesseeeesssessnesssesessessaneens 225
B.3.11. meSSAZE:AAAVIEWcueoeerieieirieceeceriteceeees e srestss e e eestsssesssesasaessesaassens 226
B.3.12. message:RefreSRDISPIAYeeoveeceeeceeeeeiieectrcveesaenteesressseseeseeeenssessnens 226
B.3.13. MESSAGE:REGISIEYcooeeeeeererereeciereirereieesssresseerssseessesesaneesssensaesessesssassssssnns 227
B.3.14. message:ReGISIErNOGEecceeceeeeeeeeeeecieeeteeseeeeeesseeseessesstesvesstensseseen 227
B.3.15. message:RegisterNOAe2Du..ueecceecueeeeeeeeceeerseeesreesssesaresssesssessssesans 227
B.3.16. message:RegiSterNOAe3Dueeecoecueeceeeirecreeiveeseesesssseesseeseessessesssenns 228
B.3.17. message:RegiSterSHAPE.euvveecreeeeeceeciveetreiaeeseereresteseeesteeseessessesnnens 228

ix

B.3.18. message:RegisterShapeZD.... .. 228

B.3.19. message:RegisterSRAPE3D.............uuceiveoereirieieesiieeieessesiesssseesseessaeassenens 229
B.3.20. meSSAZe:REGISIEIVETIEXccueevuireeeceeeieerieriesiraisentectnsseseeessessessesnsasseesaeeenes 229
B.3.21. message:RegisterVertex2Douccrcenvieiriereiiiiresseeeneessseessanesseeeeens 229
B.3.22. message:RegisterVertex3Diicioieecceeeeeeeeieeeecteeeeeeeeerae s nnaeeen s 230
B.3.23. message:SeleCtiVEACHVALE..............ccccuireuierieciierreecessee st saesseesssnseeeeesnas 230
B.3.24. MeESSAGE:SOIACIIVE.........eoueeeeiireeeeeeiieeteee st st s sae st et s ra e sese s ave st e e naes 231
B.3.25. mesSAQe:SEIALINeooueeeeeiirireeeeect et 232
B.3.26. message:SetAffine2Doveinenenrinneiinsieesteenrste ettt 232
B.3.27. message:SetAffine3Douieceriiiiienieninintee et saa s 234
B.3.28. meSSAZE:SELCOION..........oooeeeeiieirieeceeeeeeeeestee et s e s assae e b s 235
B.3.29. message:SetCONESIZOcocuueeriieciieeniensineeseeeseeeeeesetesaas s sesenesseesesens 236
B.3.30. mesSAge:SetCUDESIZEcccoereeiireieeirieeceniresstessteceree e srnasases e ssressessenans 237
B.3.31. message:SetCYLINAETSIZe.uueceeeceeeeireieieeeireeeieeereessesseescsesserensnsenanens 237
B.3.32. message:SetDefaultACHIVe.cocceuveerircrieerineieceestecreesiesee et see e e seeeae 238
B.3.33. message:SetLabel..............ieecoenieniircieieeeeete st sae st ee s 239
B.3.34. mesSAge:SetMOde................cocuueevieeeensreeisrieceseresiesineriee e e sesaes e e ssesssesseeeans 239
B.3.35. message:SetPOINLSIZe.occcuuvveeriieireisieasitieste s eresse st e s sse s e s sbesssne s sevaas 240
B.3.36. MeSSAZE:SEIPOSILION.oceceeeeeeeieecrreeiieeitreseeseeesireesssseesisreessseesessseseensnes 241
B.3.37. mesSAge:SetREfTesh.cocuivceerieiciieinieieeeet et ee e 241
B.3.38. message:SetRotation2Deecciirerccinireieiereieecesserescresssreesseesseessssnens 242
B.3.39. message:SetROtAtION3Doeeeceevveercerieiieeiienee et seesaesase st seesee e nas 242
B.3.40. message:SetRotationCenter2Duucueeeeeeeeevreerieeceseiseeseeesesessessssnens 242
B.3.41. message:SetRotationCenter3Dueceeeeceieeeceveeiieeeceeeseseessesessesssnens 243
B.3.42. message:SetScale2DDieeceviierienereiesenetesiessnesee e srae s esaesnaeseeenes 243
B.3.43. message:SetSCale3Duiriveeeceiecieecieeeeeeite st e st nae st esre s 243
B.3.44. message:SetScaleCenter2h..........uumieireceeeeeceesiesieesescessesssseessssssesnsnenns 244
B.3.45. message:SetScaleCenter3D...........uueeeceeeeveeeeireevieescseecieessessesesssssesssneas 244
B.3.46. MESSAGEISELSIZO ..oveveeeerieeeeeecieccreeciae et srtae e e e eressareesesestaessaesessesssaseseesanses 244
B.3.47. message:SetSPRETESIZEuwcivreeeeereeriesieriiecienteiee e seaesessaenesesassassnens 245
B.3.48. message:SetTOTUSSIZOuuueueeeeeiieerceircirineeeesteesseesvesssneensssste s e sesesasnses 245
B.3.49. message:SetTranslation2Dcuvcvcveceeieneienreieesreeseeessessesiessssessennes 246
B.3.50. message:SetTranslation3Deeeeeceeeeeeeieenieeceneeesesssesseessesesenessenes 246
B.3.51. message:SetValue...........evicieeveeriiecciicieeeeeerte e cveesateesaeesesessreeeessaneees 247
B.3.52. MeSSAZE:SEIVECIONooveereiieeeceeritieccireeerteesteesarsese s stsesaa e s sessnnesssasensean 247
B.3.53. message:SetVector2Deecouneeeeneecinesnesescssesesssesassssessssessessessseeans 248
B.3.54. message:SetVector3D ... evieesinieesieeieet et se et eas 249
B.3.55. messAge:SetVertex2D........uueevceeeeeeeseesieeiseesereseisesessesesasessssssssssssssssssees 249
B.3.56. message:SetVertex3D.......u i cereciiniiecineeseceseneeseesssesssessseesssessneassnans 250
B.3.57. PrOCeSS:CONE.oocuevvcteiieiaeiieieseriaesstssnesseesseesteesesste e sssssta st esasnseensenes 250
B.3.58. ProCesS:CUDE.ccuviueeceiecireeeiestseesetasteseseessressas e s sessassnses s ensesnsesnseenns 251
B.3.59. process: CYLINAErcoueiieieseiiiriesteneeceeneeseeses s itesesste et s e sssesnsneans 252
B.3.60. process:DodecaRedroneecceeceeceneeeieeiectieceecreeseessen s eeeenes 253
B.3.61. process:IcOSAREAION..............ouuueeeeeeeeeeeeeeiesieecteceesies s e sae et ssesssesereenns 253
B.3.62. Process:INOdE...............oc.uocereneirieceiecieesientesteestes s rcsseeser s s ssesssessesssasnseeans 253
B.3.63. process:NOAE2D.............uueeeceeeieeeeeeeesieeieesiaeeesesecesesseensssssssesesesssssnseens 254

B.3.64. process:NOde3D.............ouuecerieiniiesiineeeeeit et et see st ssesere s s e s 256

B.3.65. ProOCeSS:ODBJECEccuueeeereeeeeeirerireniieeecniteeee st seve et sat e sse b e e ne e 258
B.3.66. process:OCtAREATONcoocueveeevereeinieeeeiresesieee et sesssessasseaeesane 259
B.3.67. process:POlYGON2D.............cocieueerieeinensieeieeiessteessesinanessstsssasseesanesenasasnsseens 260
B.3.68. process:POIYGONID.........ueeeooeiiireieeeiiesieeessteesteesessnae e saee st e nassanesanes 260
B.3.69. DTrOCESS:SHAPEuo.eeooneeiiiieeieeiiireee ettt es 261
B.3.70. process:SRAPE2Dueeveecmivieeiersiaeneeitesneesies et ese st s se e s eeseens 263
B.3.71. process:SRAPE3Dc...uueeeeciieeeeeseeeeetesntee et sne e s nas et ae s 263
B.3.72. process:Sphere........................ et eeeeteeeeeeaetrane e et rareaeat e et e nenee s bt s e e e enreas 263
B.3.73. process:TetraRedroncuuceecreereieeeiernresescsene e saes e e e e snes 264
B.3.74. PTOCESS:TOTUS ...c.ceeeeneentreieeceeeieeeene st eeee e ane st ss et esan e et e senasennesneas 264
B.3.75. PrOCESS:VEITEX..cc..uueeeeeveaaceiiiseiieeesireeecsteeesetressaseasessssssssesssasseessaeasssasasnssenn 265
B.3.76. process:Vertex2D...........uueecvceviriineeecseeeeniresssessseneseesssssessesaesssseessesssnesones 265
B.3.77. Process:Vertex3D..........uueeveeirsieeiriretissiresensstesssesssansessesssnsssesssessnssaesessns 266
B.3.78. PTrOCESS:VIEWccouvirreeciiiierectecitestecstsssse s ts s s tessee e ssaeeee s ssaaesss e s aasnsnesaees 267
B.3.79. Process:VIEW2Dccvociieirciriieeesieenstee e s siee st ee s ssesse s ssae s et asse e 269
B.3.80. Process:VIEW3Dcoceeeiiereecieinceneenseesieeste s sseeesssasesssessesasssaneesennssasseens 272
B.4. GLUT VIEW MANAGER (GVM) CLASSESctttiiieeteeireersiteseasreesseeesessseesssasesssseses 275
B.4.1. gum::AdANOGE ...ttt 275
B.4.2. gV AAASRAPE ...ttt et 276
B.4.3. GUIMIIAAAVEITEX.......eneeieeeeeeeeiecctree et sae st e s e e e s sanesne s 276
B.4.4. GUINIICORE ...t sette sttt rnee st et a st e et e s nase st s taeee s nessaasaesneens 277
B.4.5. gUm::CreateODbJecCt..........uueierceieceeenineeeseeeiaesie e svssie st stes e seresanesaennens 278
B.4.6. GUIMIICUDE. ...ttt ettt st es 279
B.4.7. gUMIICYINART ...ttt ettt e an e s 280
B.4.8. gvm::DodecaRedron................coueveceeinvniesieecineersesctesine e sene st sanesnesnes 281
B.4.9. gum::IcOSAREATONouvoueeecineiiireeeeieineet sttt stesiresses e an e s sen e saesseransneens 282
B.4.10. GUIMIIMESSAGE ...nuoneeeeneeeeeeeeeiaeieeneeesneeesiessssaaestsssstessee st s sssnasssnessnessnsassseen 282
B.4.11. @UIMIINOGE ...ttt e ste e st e s e s e e aesae s ne s re st s e e e neenes 284
B.4.12. gVm::NOAeE2D...........ooeeeeeieecieciiaetieccireectesssnnecsiesssteesaesassesseassseessenesasasanens 287
B.4.13. gUM::NOAE3Dooeoeoiaeneetecteeteeee e e see e e ses e e et e et e s 288
B.4.14. GUIIIOBJECE......ooneeeeeceieeeeeeeieecieeeieeeecetteeeertressesteeeesaeeesssesssseeesaeesesnnesesnes 289
B.4.15. gVM::OCIAREATONccaeeeeeeeceaceeeiesceeseestescteesteesveessaessesstesssesssasseansesnns 294
B.4.16. gum::Polygon2Dc..ocoeeevneireeeineeieiescteesesseesssesneneassassnesssesanenaesnnens 295
B.4.17. gVM::POLYGORIDuooneeeeeireceeeeeieeeccctteeeetee s eese e e s seeeeseeessasanesseaensnsaensseens 296
B.4.18. GUIIIRESTESN ...ttt e et e e st s sasesra e e e s ta e snaenabann 296
B.4.19. UM ISEIACHVE..........ooeviereeeciieiieeit et esresesvae st st seasssse s ass st e ssnassnaasasen 297
B.4.20. UM :SEICOLOT ...ttt teesteesse s ae s ssa et s e st s ae e enenns 297
B.4.21. gV :SEtCONESIZE.c.eveveeeeiieiieeeecieereer s stee st e st esssssee s saae s e e s as e naases 298
B.4.22. @M :SetCUDESIZO.euveceeeeeireeeeeieeceeeeeeecrreesseseeeecsseeseeessessaesssesassesssens 299
B.4.23. gVm::SetCYLINACTSIZEeeeeeeeeeeeiiecceeiereectieeeeeesneeseeesecrassnsnesaneessaesanees 300
B.4.24. gum::SetLabelcceieoerieieriireiieieteeeee sttt st 301
B.4.25. GUIIISEIMOUE ...ttt s ee st esase et beessessnnasensenneens 301
B.4.26. gVM::SEIPOINLSIZEoocueeeeecneeneineiecerntece et vanse e s evesesne st ansasssestasneassasnes 302
B.4.27. UM :SEEPOSTHIONc.eoeveeeeteeceeceeceteeteesessvsessteeteesaeeeeseesnessssssesseensensaenns 303
B.4.28. gVN::SEIROIALION.c..eueeeeeeieeeeeeeieeeseeeseeeinaeesseseesressssenssesssessaesssesesasensens 303

Xi

B.4.29. gvm:
B.4.30. gvm::
B.4.31. gvm::
B.4.32. gvm:
B.4.33. gvm:
B.4.34. gvm::
B.4.35. gvm::
B.4.36. gvm.:
B.4.37. gvm::
B.4.38. gvm::
B.4.39. gvm::
B.4.40. gvm::
B.4.41. gvm::
B.4.42. gvm::
B.4.43. gvm::
B.4.44. gvm::
B.4.45. gvm::
B.4.46. gvm.::Vi

ISCIROLAIIONCERLEY <. eooeveveeereiseeeeemcreeiresssesasesreenssssisesssesrsssnssssnesasesns 304

SOISCALE .o er e ee vt e e et e s e s e e re s e s s e e s s anssas s e s sannan 305
N AY 671 1 O 77 7 TR 305

Y Y 7 U OSSRV SR 306
ISEISPRETESIZO ..ottt 307

SCITOTUSSIZO .cccoooeeeeeeeeeeeeeeeeeeee ettt eer e e e e e v e e e se s s rereesasasaaneeeesas 308
SCITTANSIALIO N «coeeveeereeeeeeeeeeeteeeieeereesseeeereeetsarseesessesesnstansasseesesasensn 309

SPRETE ...ttt sttt sttt e st se e s b 313

B.4.47. UM VIEW2D ...ttt sesees et sae ettt nee e e 325
B.4.48. gUM::VIEW3Duuveiniirireeeccreeecte et tecsaee s st s seae s s asa e sar s s saae s 326
B.4.49. GVM Definitions not associated with a specific classcouuvevrcveeaunn. 328
APPENDIX C. SAMPLE CODE LISTINGS 331
LGOI TR 5 7 U 5 OO 331
C.1.1. Add ENVIFORMENEMSE «....c..eevmrrenireeereeneieeeesiereseesatnssatesseesasnseesssaenssssesnessaness 331
C.1.2. AQATTACKINSE .ottt sttt s e st a st sra e e s s 331
C.1.3. AdJUSIFOTIMATION.MSG .c...eeoeeevereieenirineeereereersstseseessesesesssassseessseassaesenssanes 331
C.oli4. AHACK.MSG ..ottt ettt 332
C.1.5. BAMIE.DTOC.cocueeseieeecnreeeeceieteeescteacse st setsraasee st sesasstes st aaaeseesasananasaeseannenas 332
C.1.6. BattleVIEW.PIOC........ueeceiicneiitritcntc st 332
C.1.7. BIUCCOMPANY.PTOC.....ccuuereeereeerceeecerrenetsenesitsessesaessssnassetsssssssseesseassesesnessnnes 333
C.1.8. ChAnGeTTACK. IScocoveveiriineieiiitreircirine sttt et abesee st esataseene 334
C.1.9. COMMANAPOSLPYOC........ccccueveeeiereiieeneesieeeeiteeesessitasssssessassssesssssssssesesseesssssesns 334
C.1.10. COMPAMY.PIOC......couueoeiaeereeeeeeceeeeseeenessrees e sessssteseesssesensessanas st sensananes 335
C.1.11. DeStrOYOA.MISG......uveeeeeereceteeeeseeariteeeeiseescteesssessssaesessessssseessssessssssssssesssssennn 337
C.1.12. ENVIFONMIENLDIOC.ccceruerereesireeeresisesiesisesssesssnssasessessissesssssssesessesssaesssnns 337
C.1.13. EXPIOSION.ISG c...ueeeneireieeeesreeeseeecensseaeneeeeessas e s e s sanesenesasesssen e snassenssnsasnsnan 342
C 1 14, FIPE.MSE ...oooeeeeeeeeeeeecteeeereeseceeseteseesaeesesteensssesssaeesssaesesesenssassssnessnsessesnsenn 342
C.1.15. FOrmationMOVE.MSGceeecceuericeeeeiiersiieneieeestsssssssssssssesssssssssseessssessssenns 342
C.1.16. GIOUNA.PIOC........occeecueeeeaeessieeeecerereeeeeesransee e saesssesseessesesssesssassserananseans 342
CoL 17, HItSG c..eeeeeeerreeeeeeectete st tevee sttt aee st e sen s s asaessesaaesnte st esassaesatessnesaessaensenns 343
C.1.18. HOIAPOSTHION.MSGcoceererererieriereressserereeneseesisssssessssesssesasesssassssssssssssaesnnnes 343
Co1 19, IMPACLINSE vttt st e et s e e s sen s s ae e s be s e s e st e s sae s anennns 343
C.1.20. LOSETTACK.INSEoveeeeererrreretieestneeeessinessnssreesnesaeesasasssessesssessssesensssasaessenen 343
C.1.21. MOVEFOTTNALION.INSE «..oeeeeeeeneeeeieeeeeeereiseeeesesssassessnesssssesssssesessesesssnssensesan 343
C.1.22. MOVETO.MSG ...eoeeeeeeeeecirteecieeeceeeesiaeeesssaesssessstaesssseesesssesssesssssesansseessssesnn 343
C.1.23. MovementComplete.msgc.coveeeevircriisericriienerieeseteseee e e sasesseesetesseeane 344

xii

C.1.24. MURITION.PIOC ...coveeeneeeeeireeeercreereeireesireeneesnesessassasseasssssasasssaseessssessssnssssssesan 344

C.1.25. NeWtONIANMOTION.PYOCuuueeeeeeieeeeeecreeesseesieesesisenneeeeessssesssesssssaessessnsenesses 345
C.1.26. PLALOOTLPIOCeoeeaeeveeeecesereecreesiscnesseesansnsesssssssaesssassessesasassresssasnesnsesaes 346
C.1.27. ReACOMPANY.PIOC......eoauerieaieerieieeserieereeresteentassesseresaeessesseensesssessnanesssesens 350
C.1.28. RegisterEnvironmentODJECt.MSEoocevvvuiriceerieeireeeeniiasseresaessasesesesasesasens 351
C.1.29. ScheduleAddTrack.MSguuceeeceeiceiereieierereercierceeeseesseeesaeessenessasssasssses 351
C.1.30. ScheduleLoSETraCK.MSG.......cccveeeceiicerererineiiseesisesseeseseessssassseesssesssasessnesnses 352
C.1.31. SCheduleTrACREVENE.INSGccceeeeeeeeeeeieeeeecireeciveeesseessesaeeesteseessssesesssssssssenns 352
C.1.32. SensorTrack.proc............civiceiiiiniiicien s 352
C.1.33. SetAngularAcceleration.msg.............occceevvueircenvieeeveecriensneseresaes s ssssessens 353
C.1.34. SetAngularPOSItION.MSGccccueircieeieeceirieiee et seeessn e st e e ee e s er s sessnes 353
C.1.35. SetARGUIATVELOCIEY.MSGeueeeeieceeeciiirrecetiesceesiee st e esaaesene s eraeesasasenessrassnees 354
C.1.36. SCtENVITONIMEHEISG. ..c..eeereeveeeeerirareieeeiessnescseesstessetessannssseesnsesssssessassonesenees 354
C.1.37. SetEOTIMALION.ISE «.ve..eeveeeerereeerereiieeessteeeeeseesssaeseessasssssaesesstessssssesasssnsenssenns 354
C.1.38. SetLinearAcCCeleration.MiSgu.ueivceeeeeieeeesieeeeineesessaesssseeaessseesssnsesssssanas 354
C.1.39. SetLinearPOSItION. MSEcoceeeeeeierireceereieieeesiteeseneessaesssnsssrassssssssssssasssnens 354
C.1.40. SetLinearVelOCily.MSgc.coevceerveeevuvereiriiereieesitesseresasesanessesessssssesssasssnees 354
C.1.41. SEIMOLION.IMSG......oeecereaeeeeeieieeeeeeeersteesteseae s e s se s s et e e saeessesssassesaesssaesssesanens 354
C.1.42. SetNewtOnIiAnMOTION.MSEc....eeeriuereseirieiieeessreesesesscssaesesttessssssasssasasssssesen 354
C.1.43. SetTANKSIALE.NSG ...coneeeeeeeeeeeeereescieeeecseeesseseesaesssaeesessnseesseesesssasssnnasssssesns 355
Col 44, SEODISG .ottt ee et s st st sas s s e s e e s see e s an e s et e an e sraesanes 355
C.1.45. SOPAZIMUIASIEW. TS ..ottt s e et s s st e sae s erenesaae s s e s aeseseens 355
C.1.46. StOPELeVAtiONSIEW.MSGueoeeeriaeireeereireeereesiereseeeseseaeestaeenns s ssteeenaessenn 355
C.1.47. StODSIEW.TSG ..ottt st s st e et a e e s ta e ae e st essaa e sean 355
Col48. TANK.PTOC ...eoneeeeeeeeaeeeeeceeee i et sccitescte e e s saeesssraessse e s s sssssessnaseesesesssseansnneesns 355
C.1.49. TraCKEVERLMSG.....c..eoeeeeeeeeenceeeesrereeeeiessavesee e seesseneesstassesssaaasssaessaasasesssnas 360
C.1.50. TrackMOtiONEVENLINSGccovvueieeieercieeeeiireeeeieeeeeeeessssesesseeesssssssesssssssseeens 360
C.1.51. URIISEIUP.INSGeeeaneeeeeeeerireeieeensesiseesteasstessseesssesssesaseassseasssssesseasssnsssnssases 360
C.1.52. VERICIE.PIOCueeeeenreaeeiieceeecieeeeeesttsestts st s ees st s e st e sas s sresnas 361
C.1.53. gVmM/GVIMAAATIACK. L c.......ceuoneeieeceieceeeeireeeee s ctee st et e s et ae e enaean 364
C.1.54. gvm/GVMAAATTIACK.CXXc.uuoreereiiieircreererceetece ettt 364
C.1.55. gvm/gVMBALIIEVIEW. H..........cocueeeverireesieieeretieteesisciessetssteecees e s seessesssaesanesnenns 364
C.1.56. gvm/gVMBAIIIEVIEW.CXXooeveereriiaecreiernieesresseeesentesaesssessaesseesseesssenanennenns 365
C.1.57. gvm/gVMCRANGETTACK. Looeeeeeeieieciirieeieeeteee ettt saesen e 368
C.1.58. gvm/gvmCRANGETIACK.CXXcoocuereireierciicceeeireeseee et sae et ae s e 368
C.1.59. gvm/gVmCOMMANAPOSLEc..uuocueeeeeeeeeeireriterceeeeieeseesneessssenssesssennens 369
C.1.60. gvm/gvmCOMMANAPOSE.CXXcccovevureeereeercrresierireeesssesseessessasesesssssaseesseensenss 369
C.1.61. gvm/gumDeleteTraCK Roeeueecueiceirerieireeeieccteecee e esaressseessessssennens 370
C.1.62. gvm/gVmDeleteTraCK.CXXccuevurvvurverineteecerireereseeeceeecsesasessesssesaeesnessenns 370
C.1.63. gVI/QVIMEXPIOSION.F.....c.cuneevereeeeeeineceeeceeeeee e e e s s s e seasssesnessaseneeas 371
C.1.64. gVM/GVIMEXPIOSION.CXX....couuereerecrecircereieestreeeecreseeseesaeestessesssesessaesssensenans 371
C.1.65. GUI/GVINGTIA. R c.cunaeeeeeeeeeieeeeeeeeee s r e sae e b s s ana s snesanesnes 372
C.1.66. GVM/GUIGTIA.CXX .cuveveeeeiirereecieciieete s e s ceeseeesaeessaeeeaeeesbeesssesnressnennsess 372
C.1.67. gVM/GVIMGTOUNA. R.......cneeeeeaieieeeieeesieecteeteceeceeseeesee e snae e s reeseeseenns 373
C.1.68. GVIM/GVIMGTOURA.CXX c...eoeeeerereereciieeencirererieseeesesesssaeessnessbtesssnesssaensassnenan 373
C.1.69. gVm/GVMMURNILION. Lccuveiverieiiieeieectiscreee et e sssese s s ebeessas s sneesneessaean 374

Xiii

C.1.70. gVM/GVMMURITION.CXX «.cvoveerceerraieeeeeeeeestasresseessaseseasseaesseeeesssnessesesaensseens 374

C.1.71. gvm/gvmNeWtONIaGnMOtION. Lcocovcueeniieiiirciieieeeieeeertee et 376
C.1.72. gvm/gvmNeWIONIANMOTION.CXX....cvvirivueririiierieercrierseseeseseeseeresesseessssaessseses 376
C.1.73. gvm/gvmSetNewtonianMOtiON.F...........cocovvverininneinrincricniineenee et eseenes 377
C.1.74. gvm/gvmSetNewtOnIANMOION.CXXoocuereuiriuinriiteneirereieneesitseeee e sse e eens 377
C.1.75. gvm/gvmSetTankState.N.............ooceeueeveeroiinineiieeteeeeieeeet et ene 378
C.1.76. gvm/gvmSetTankSIALe.CXX.......cccovueeourvereriieierieireserteseee s s e sn s seenens 378
C.1.77. gvm/gvmTaActiCALGTIA. Roueeeeeeeeeeeeeeceeeeeeceece e e e 379
C.1.78. gvm/gvmTactiCAlGIid.CXXcueivuireorreveereriecitirseertessee st ssensssesesasesseeesaesnenes 379
C.1.79. gvm/gvmTacticAIVIEW R.........oueeeeeeneereeienieeeieeeree ettt et 380
C.1.80. gvm/gvmTactiCAIVIEW.CXX..ueerireerciraceieecereiireceeseesiescee st e s seeesesssneseees 380
C.1.81. gUM/GVIMTANK Rcooneeeiiieeeeeeeeeet ettt et et sae e 382
C.1.82. @VM/GVMTANK.CXX ..ottt ettt e s san st e asaessens 383
C.1.83. GUM/GVMTTACK R......ueenieereniieiirecectr sttt ettt sa e 384
C.1.84. gVM/GVMTTACK.CXX ..ottt ee et ae s 385
C.1.85. spt/sptANGUIATMOLION. Lcoueeeeeieenicrieeeesete et sae s 386
C.1.86. spt/sptARGUIATMOLION.CXX .couvveceerineeciieetieiresceesarescvesssaesseseeseesasaeesnessenens 387
C.1.87. SPUSPIDIELS. Rt ctesren st esar s e tessne s e s ses e st e e sea s e e assesnsans 390
C.1.88. SPUSPI/DEIS.CXX «evvarariaeiiireeriiesireee st esrtrssstesisestrssasesasssseesssessessstasssesesessenes 390
C.1.89. spt/SptERVIFrONMENtODJECt.R.........c..eoveeeeeeeinreeceesiieneeesensee st e seeeeesssaesneens 391
C.1.90. spt/sptERVIrORMENtODJECT.CXXveeeveeveeeeiaeiirireeseessessieesessssessssesssenessassenns 391
C.1.91. SpU/SPILINEArMOLION. H........covveeueeneeeieeiecirineetecrerite e sneses et saessese s essesneenes 392
C.1.92. spt/SPILINEATMOTION.CXXoecuvrieeeeeereeseertirieeeeseeseesseesneseeeseeserssaessassessesans 392
C.1.93. spt/sptNeWtORIANMOION. R.........ceeenveeereireireteceeeteneestesie et e seesssesresnenans 395
C.1.94. spt/SpINeWIONIANMOLION.CXX «...eeeeneeeeeeeiiserereeenresee et e eesan e e saesnnens 395
C.2. BOUNCEL ...ttt s s e s e st 397
C.2.1. DOUNCE.DTOC. ..ottt scs ettt ae st ssesae s aae st s ne e 397
C.2.2. BT _UPAALE.INSG.......ooeeeeeeeeieeeeeireee et strestesese s st e s se s sassenessaesssa st aeaasssees 397
C.2.3. RULINSG oottt ettt et asae s et et e st e ste e e e ea e st e e e e et ensesaeers 397
C.2.4. PATLICLE.DTOC.ueueeecerieeeieeeeeeeeecceeeecieeeeeceeesstaessaeesetesssseesesessssenessssnesareennns 398
C.2.5. SEI_SYSIEMLINSGceneeeeeesireeeeeeeireeeeeeeseeresesasesesssnsesssesstasssasseessessssessssnsennsnns 399
C.2.6. SEATEISG c.eeneieeeeeeteeeer sttt e st e s e st et a st e s s et e e sae s sa e st e sreeansasnseesrnasnsaes 399
C.3.BOUNCE2 ...ttt ete et e treet e e e s sae st et e e st s bessnasnesaaasnesassasesseensnensensenans 399
C.3.1. DOURCE.PTOC......c.ucoeeeereririreeeseessrensteeres et ssse s stasae e ssesnesaessessas e e e essansennns 399
C.3.2. BOUNCE_VIEW.PIOCvoveeeevereeeeciercreeciasassenesssssssessaesesssssesessssseanssssssessssesnseens 400
C.3.3 RILINSG ettt ettt r e ee ettt ae st s st s s e s e e e s s eas s be e se s st e ntaesseaessenasees 400
C.3.4. PATLICLE.PIOC. ...t ces st ste e sae e et se e san e sssaeesanans 400
C.3.5. SEI_TNOLION.ISE ..ueeveeeereeeeirieeeeriiereittesieesseteesssesstsasssssesssssesssesssssessassresssenses 402
C.3.6. gVM/GVMBOUNCEVIEW.H........ccuoeeeeiieiecirceeeesteseesrercnesaenas e saesseesrasaes e 402
C.3.7. gVM/GUMBOUNCEVIEW.CXX..veveeeecreiereeciiaeseiessiesieeseseenssssessssseseeesessssesessesssenes 403
C.3.8. GUIM/GVIMPATLICIE Pttt et be s ae e ae e 403
C.3.9. GUIM/GVIMPATTICIE.CXX ..eoeeieereeieceereeetecste e s steeessee s s saesre e sae e asen s s e saens 404
C.3.10. gvm/GVMSEtMOLION.R.........c.ueeeeeereeeciiieseisenrecseessresens e ene e e e eeeeesesesesaseees 404
C.3.11. gvm/GUmSEtMOLION.CXXcoccuievcureeeerieresrersstaseesiteesseesaestesseesarassssesesesansans 405
C.4. BRIGADE] ...ttt et aesre e st s reas e sansenaenas 405
CoA. 1. DALIALIOTPTOC.coueceiieeeeeceeeitee e eiteeeseeesreesssesressssesssesnsessesssassesestesssesnennns 405

Xiv

C.4.2. DYiQAACPIOC.c....eoeeoeeeeeereiereecesieeieeitesea st es e asaasese et sesesnee st e e s sssesasssannns 406

C.4.3. COMPAILY.PTOC....uucccuuireerueeeirerasreererseresitsessseessssseassssnesesssnesssessasstasssssnasssannan 407
Cod.4. OFART.MSEG ...ttt ettt e rets e s st e e s et e e s ssae e s bee s st e e s s ssaeasssnanan 407
C.A.5. PLALOON.PIOC......ccccouerieriinieeecrereeectveeessessssvtsessereaessstsssssenesnsbesssntaesssssesesnenas 407
C4.6. TEDOTLINSG ..veoeeeeeeererctreeescreeseereteeertesssaesisesssse e s anseabessssesaseaasassssananssasssnesanes 407
C.4.7. SEE_PATONLINSE ..o.eeeeeeeneeeieeeeerreseee st sease st e e e eaeste e st e s senssasesaneasasnesaneesssnes 408
C4.8. SOUAICT.PIOCc..uuooceeeeeeeeeieeeeccteeecrie st ee bt es st s st e s e s rta s e s te e s s aaessssaesssaeans 408
C.4.9. SQUAAPTOC ..ot ee s cte s st vestesae st e esae st s s be s ae st e e e e sraensnesseanes 408
C.oAJ0. URTLPTOC ...couerieeieeeieeeieeeesteerae sttt st vessesee s e e s sse st e e st s saesssesee e e e eneasseeereeans 409
C.5. BRIGADEZcoivuiiiiniiintiitiinennte sttt st et sent e s ese s et ss e saaesasesaessassennsnnnsnennse 411
C.5.1. DAHALION.DIOC.coeeeeeeeeieeieeesessieseeceaeseaseses e aseasesessessesssesssesansssnasseesanns 411
C.5.2. DTIGAACPIOC......occuueeeeeeneecieecteeereeeceesivecsseeaissssaessstessstsessasesassessesnasesesasenens 411
C.5.3. COMPANY.PYOC. ..ottt e et e et nssee e see s nne s s ne s snesvanas 411
C.5.4. OTACT.INSG ...ttt st ettt e e n et e e saa st e e e s evenas 412
C.5.5. PlAtOON.PIOC ...ttt et 412
C.5.6. TEDOTLINSG ...neineeteeeeerieeeceesee st e ste st e sreste et e s b e sstes s s e s st e s anas e etesnasasesneesannns 412
C.5.7. SEI_DATEILISE «...oeeeeieeeeeirireeeiieeeeeeseeeeeseesssteeeeasssssseesssssssaassessssssseasssnsneeenn 412
C.5.8. SOIAICT.PTOCconeeeieieeeeeceeesteee e e tee et e e st e s st e e s e aa e e ese e s sasae s s nsne s nnnen 412
C.5.9. SQUAAPTOC. ...ttt st s st ssae s s s nae s rnesnesanes 413
C.5.10. URILDTOCueoecreeecereeecererecteeeieeeeeinaesetts e sseesessseaesssnesesstaesesassasstanannseassasanann 413
C.6. HIERARCHYcortiiiiiiciiiiienteetetesttceenetesee e st ee e e set e st esan e st e st esasneeseteaneesmeenatonsanns 415
C.0.1. GORETICSG c..eerreeeeeeeete ettt s v s sae s ee e e s e et a s s sa et s naa s s nenneesanas 415
C.0.2. BICTATCHY.PTOC.cueeacueeeeeeiaerteeseceieeecrtessiteeseistaasenressssassestasssssassansseesnsesnn 415
CTLPING .ttt ettt tbe s s b s e s s be e et n et s ae e e e nnenanas 417
C.7.1. GENETIC.SE ..ueenveerveeeireeseiertreseetessattarassseessestaesesnesesasesssseessssasssssnnasnsaeann 417
C.7.2. PIRLG.PTOC.c.....ouorieeecrieeeiieescieeeseteeesssassassaessssessnsstessasasssanssesssssensnsasassssessnnseenn 417
C.7.3. PONG.PIOC. ..ot estte ettt ssecs et sesae e e see s et s st ssee s s e e snsas s neesbeas 417
CL8. RELAY L.ttt ettt sttt se et st e 418
(O A T3 4 Lo /X Y OO R 418
TC.8.2. TEflECIOT.DTOCeoeeeeeeeeceeeieeeceeee ettt s cte s e ste e ee s s ete s e s srae s sseeseseeassnsaeensnans 418
C.8.3. TOLAY.DIOC ...ttt s s na s e se e saas 418
CLO RELAYZ....o ittt ettt et et st s et nae s ae s ee s sanesaeas 419
O T 4 o /X Y - OO USRS 419
C.9.2. TefleCtOT.PTOC ...ttt ettt et e an e s s n e e 419
C.9.3. TELAY.DTOCuueceeeieeeeeieeieeeceirectteeeieeeecreeessaeasssttaeseeasrssnaseesssesensanesesssnsssnsnann 419
C.9.4. SCIPATINEY.IMSG ..ceeeeeeneeeeeeeeectineeecveeeeseeeesssesessesesenereesssaesessseeessssesssssnessnseesn 419
CL10. RELAYS...coiiiniee ettt e st ste e e s ee st s st et eess e sse et e e ae st e st e mnanns 420
C.10.1. CRILA.PTOC ..eoeeenieeiecereeeeeeeeceeceteaestee e s ses e te e e s e s e s sestesse s sessasansesnsenes 420
C.10.2. GENETIC.MSG ..ottt creeseteeteerte st st e et ss st et e et ssesaaee st e s e e srnenasensenns 420
C.10.3. TELAY.PTOCoconeeirieeceeeeeeestteeecttteeceeeeste s e s it e e e ssse e e s erassebtessnsteesesssasessaenas 420
C.10.4. SCHUP.INSG......oocreneeeeeiereeieecee s st se e s et asstese s e stsssaaessseessaeesssesssanasasesnsensasnan 421
CLlL RELAYA ..ttt ettt st nesbe s et s seae s tne s s aevenaesssa s s snaesressseasssnasnseesssannses 421
C.11.1. CRILA.PTOCooeeeeeniietetecteeereiteeeee e st et esn e s s et s se s aesan e s e e s e e sneennnnns 421
C.11.2. GERETIC.NSE ..cneeeeeeereeeerereecte et esnesesae st e s eaa e s ere s s be s neeesae e s saaesssaseneannes 422
Col1.3. FELAY.PIOCcouuuaaeeeeeeeceisieecttieeeeeeeeeeccee s seasesbeessse st e s s sessasaasansseesnnesanean 422
C. 1.4, SCTUD.TSG.....eeoeneeeeeereeeerieeeeaeeeesteeeeraeseesteesessssasssaesassssesestassesstssasasesessasssseenns 422

C.11.5. SUDSCTIDO.INSGneeeeenereeeieeieceesetetee s te et st st e see et see s st e e e sasesaesasesanens
C.11.6. SUDSCTIDHION.PIOCeevevevcieeineninieesineisesesssessesstesssessessessesssessesssssssassesssenns
C.11.7. UNSUDSCIIDEIMSGveeeveereeeereeiiierct e cte st sssaesetessaaasss s e esasesrassseasnessasennses
CLI2. RELAYS .ttt ettt sttt e s se st te e s e s sane s e sat e saesaeseasenenbeneens
C.12.1. DASE.PYOCooneeeeieeceeieeeieste st eeteecree st s erae s e s s ssas s s sassneasenesaassaeeenenaans
C.12.2. GENETIC.IMSG c.cueenneeaeieeeieeeeiestteese et ssrte et s s as st e s sra e s s e se s seassneesaenseeesaenane
Co12.3. FOLAY.PIOC ...ttt sse st v st s e v e s srae s s ennes
C.12.4. SINKPIOC.....coueoirieceiieiierceerieere et s s ee e as e s s see st et assaesesesaasssne s nsasans
C.12.5. SOUFCOPTOC ...nneeeneeiteseeneeecree v e st ee s eaees e seasss e s seasse s e e sseessnesensasanen
CLIBURELAYG ...ttt ettt st s s e e saesan e nesat e aesaesaasme e st sneens
C.I3.1. DASE.PTOC.......ccueieeeciieteeeeeneieestesescessnasetesaesssestessesssssstsnassssstenassnsesssennnans
C.13.2. GENETIC.MSG c.eeneeeeeeeeereeereenctissnee e eestt e s st s eraesesesestas e e s seasenasse e bt assnnesneasanns
C.13.3. FOLAY.PTOC ..ottt ettt st e e ss et e e e e nas
C.13.4. SINKPTOC. ...ttt sn e ee e s e see s re s e es e st e se e
CI4 RINGL..oiiiiii ettt sttt e s s sane s
C.14. 1. GERETIC.NSEG c..enneeneeeeieeeeteeitesiaeseeesee e st s sarete et asse st e esesaneasesaseraesnaasseenenas
C.14.2. REPOTHRAAEK.MSG ...eoeneeevereeeeeeiecescreetectne e estassesssee st snssse st e nsessnasseenannns
C.14.3. REPOTISIZONMSE...cneeneeieeieeeirireecteecere et srne e s tessae s easen e sse s baassneesmeesanas
C.14.4. RepOTIVAIUC.TSGuvoneeeeeinaieieseecesteetesaressesetassssst e st ssnasss et e naassessesanans
C.o14.5. RiFG.PYOC.......eoocrireceiercrieisetirceriscisesseestsstesessesssesssessessssnenseassasssesassessnssnnnns
C.14.6. RiNGMEMBET.DYOCconeeeueiiecuieciisieeesieesinesseessasseseesstesssessessssasesasseseasnes
C.14.7. SCIUD.TNSG ...ttt sttt s et e e s sar e e e et e s e e e s sesansssesseesaanneseeenrenns
C.14.8. SUDSCIIDE.MSE ...eooeeeeeieeceeenrieeceestteeseesstescresssesseesssessteeaesssassaesasasaseasnees
C.14.9. SUDSCIIDHION.PIOCooceeeceeiunenieeieceeieeetssnessesstesssssssesessssssssesasesssesssesnenas
CLI5. RING2Z....eiiieeentestte ettt ere st e s st s et e e e s esasase s e e se et e s e s s eae et e sassesntannnen
C.15.1. GERETIC.ISE c.eveeeeeeecreeeeeeeeeeecireeeinasessteeesasseeestessssessssesssnssessesessneassssesensens
C.15.2. RepOTHINAEX.ISGccuoveneereenteeeeeereeeecteete e e stesasste et snesas et sansstee e ennnens
C.15.3. REPOTISIZEMSG ...eveviaeereeieieeeeeeereeste et sseeesestasasesees st asasst et e sanesaesseensenns
C.15.4. RepOTIVAIUC. NScc..uveeeirvirereeesctesretseseesse s sves e e s ssne st s s tessanasaeesssasanne
Co15.5. RING.PIOC....uueoneeiieeeeriieecieeseecsteeseneessesstaessassstsssanesssasstsssnesnsessssessassseennnns
C.15.6. RiNGMEMBET.PTOCoc.ueeeneeeeeenreeieecreeierceeciesteeesesssesesesssssesseessessnanssessenns
C15.7. SCHUD.INSEG cneeeeeeeeeceeieesecteeeeieeeetaeestteseeaeseesseessssesesssasssasssssasssaeasasseesannnes
C.15.8. SUDSCTIDE.INSGeoceeeerevvereiriecreeciieeereeeseeectteesaesasteesseesssssseesssesssessesessnesnsesnnns
C.15.9. SUDSCIIPHON.PIOCcc..eeeieeeecvireireireeseassttesenesesesssseestsassssassessssssenssssesssesnes
C.16. SIMPLE] ..ottt ettt s en et st sn et s sn s
C.16.1. GERETIC.MSE .ueneeeeeeeeneeeeeieeereeecseesseessesessaesseesseesssesssesssesssssssessessnsessnransnes
C.16.2. SIMPLE.DYOCcc.eeieeeeeeecieecreeiiesteesreesaessaessseeseesssessssesssesssesssessssesssasnnes
CLIT. SIMPLEZ ...ttt ettt et sttt sttt s et ne s
C.17.1. GERETICINSE ..eeeererreeecrieeeteeteeeeescrassssesstaessaeseseanssaessessreessaesssessesesseesssssnnns
C.17.2. SIMPLEPTOC ..ottt sttt sttt sae st st be s ne
CL18. SIMPLES ...ttt ettt es e st s be e se e e e saasnesananenaes
C I8 1. CRILAPIOC ..eneneeaeeeeeeeteeceeereeceeeereeve et e e sesesasereessssssesaesasesesssesnessenns
C.18.2. GOMETIC.MSG ...ttt sttt st sne e e se st e ae st st e naaneesee s s ans
C.18.3. SCLPATENLIMNSG ...vveeeeveeereeeirerereeeieesteessseeareeesesasesssseessesssessssesseesssesssresnsesnses
C.18.4. SIMPLE.DIOC ..ottt teces et cte s e ses s e be s st e sae st e s saeseans

APPENDIX D. REFERENCES

Tables

Table 1-1 Alternative Simulation Approaches.........ccceccevrerirrcrnciniinenneecrcinnneenieiereeenns 4
Table 1-2 Some simulation systems used for analysis or training purposes...........coveeeens 5
Table 1-3 Current popular games using simulation technologies........c.cccoevvviivcrieiinnicnnnns 6
Table 1-4 Examples of modular simulation SYStEMSc.couverrrerirnrerscrieenennecsnninenceenes 7
Table 1-5 Some commercially available 4™ generation sequential simulation packages ... 8
Table 2-1 Distributed Discrete Event Simulation approachesccoceeevviiinvecnicnninnieas 24
Table 3-1 Data structures needed for implementing the Time Warp algorithm 28
Table 3-2 Routines used in the asynchronous GVTE computationccceeeveveeiiernunnen 37
Table 3-3 Data Structures used in the asynchronous GVTE computation............c.ceeueeuee. 37
Table 5-1 Methods for making the SODL Parser..........ccccccereereriireriennenesicsencssisssinnnens 61
Table 5-2 Makefile commands.........ccocuviinieriririiiniiniicccrentr s 62
Table 5-3 Sample simulation system direCtory StrUCIUIEc..ceeriiiuereeriesiiieermesie st 63
Table 5-4 Make command line arguments for building demonstrationsc.c.ccoceueeuuene. 63
Table 5-5 Command line options fOr SP......ccorveriiininciiniiiirrcce e 67
Table 5-6 Configuration file specification in the sp command line..........cccoveeeemeeennennen. 68
Table 5-7 Configuration file key/value descriptions......c...cocceeviveniernieneninriicnnsennnenn, 69
Table 6-1 SODL Basic CONSITUCE [YPESveeeruerreeernieriirereeeretreereeesesereeresenesisesesnesssseenens 72
Table 6-2 SODL construct member variable basic tyPes.......cocceeereereneecrcrcrcrnersercnsereeenes 76
Table 6-3 Sample SODL member variable declarations......c...ceccceeeeervversieerivenceeecnceeneens 77
Table 6-4 Sample extended data type declaration.........ccecevveeereeeccrierneenneencrnenrcesseecssennnns 78
Table 6-5 Process construct declarationsc..ccocveverrnninienieeercinenneensineniscnresneesnenanes 79
Table 6-6 Engine specification for process declarationccceceveerenieesercernercnecnnrieennees 80
Table 6-7 System-defined message member variablesccceveeeererrinencercienesceeseennns 84
Table 6-8 Common system-defined message methodscvvceeeeeeerreneneeviieeenecsnnennen. 85
Table 6-9 System-defined MESSAZEScccceervrrrrrrrirrecriiriieeerreereeeeenterreeenesaseeesesesnerenees 85
Table 6-10 System-defined process member variables.......c.ccoceeveerveveeciricrienircrecrennn. 87
Table 6-11 System-defined methods for process classes.........cccoevervenrnnecnereenneceennnen. 88
Table 6-12 sodl::ProcessHandle type routines...........ccoeeeereeriveenrenireresereseeesnssenessseesssenns 88
Table 6-13 Mode system-define methodscccoecueriieiiinieeriiieeseereecee e 90
Table 9-1 Performance comparison of Bounce demoscccccoceriirrrnercneircnnnecienecnnns 149
Figures

Figure 3-1 Synopsis of the Time Warp algorithm.........ccccoecciirereienininrenreneecce e 29
Figure 3-2 Saved state data of sample logical process at time 20........c.cccoccrvererencrennnn. 30
Figure 3-3 Result of fossil collection with GVT=7.5 ...ccooviniiiiniiieeeeeeee e 32
Figure 3-4 Results of a state rollback on LP; t0 time 6.0cccvvvererreeiverinreneeeeveereeens 33
Figure 3-5 Possible unrecoverable causality errors in asynchronous token passing GVTE

CICUIALION. ...ttt ettt st sae et sr e e aesae e e e e e s ee s e neanas 36
Figure 3-6 Asynchronous GVTE algorithm.......ccccccvevirrceninieniniriiese e ennens 38
Figure 4-1 SODL system hierarchyccccceevrrieneniirnieseeenrerceseeeseree e saessesseesseannnas 41
Figure 4-2 SODL MeSSaZE CONSIIUCTeeeuviruirriecearrrerseererrteseesseessnessessesesnessesseesencessens 42
Figure 4-3 SODL Process CONSLIUCTc.cicttreeriersrerierirerereseerireserestaseaseessessseseesstsessessees 44
Figure 4-4 Process Controller message flow........ccccovivveeecrinienicecnnninenere e 48

xvii

Figure 4-5 Fossil collection cycle in a SODL process controllerc..cocevveerncinienennenne 50

Figure 4-6 SODL €ngine StIUCLUIEcevtereeerriirerriieeierrenseecsenieestsestesnesanssseesessssssecsesns 51
Figure 4-7 Engine stand SIIUCTUTEco.cveviiiirsiiinieicriiesieetscsteen e reesne s esseesesassntsse s 55
Figure 5-1 SODL Parser (sp) installation inStruCtionscc.ccecereerineveseerienrennnserenneseenns 62
Figure 5-2 User project default direCtory StIUCIUIEocervererririeertisiirccncnrrrentssenenenns 68
Figure 6-1 Depiction of the stimulus/response notion of a SODL process........cc.cceruenens 71
Figure 6-2 SODL project build StEPSceceverrirrerrerenecieeeseerire e ess e enes 72
Figure 6-3 Basic construct fOrm.......covvviiriinneriiiiniectnrt e e 72
Figure 6-4 Sample message CONSIIUCESc.cuvveiirienennieiiernetnesresst e sne e sesssns s seenne 73
Figure 6-5 Sample process CONSITUCTSciviiriiriiniinirerterricteentrtisreesie s snaeseesns 73
Figure 6-6 Import directive SPeCifiCationceccevecerereenerencnnecreieecrene e 74
Figure 6-7 Sample import directives for message and process CONSLructs..........c.eveeenenne 74
Figure 6-8 Sample non-SODL construct IMPOrtsccccreeeeercinenrereresnerecerisinnneseseeenes 75
Figure 6-9 SODL construct member variable declarationcccccoeircvcriniinneniicnncnnnnns 76
Figure 6-10 Sample member variable declarations in SODL constructscc.cceeevenene 77
Figure 6-11 Process member variable declarationc.ccceeecverneiiiieenenisicnenisncinennns 78
Figure 6-12 Forms for specifying controller simulation enginec.ccecceeceeveeneeeneeiseecncnas 79
Figure 6-13 General method form.........ooeiiiiiniiir e 81
Figure 6-14 Sample Methods.....cc..cecviiiiirririiirrcinte ettt e 82
Figure 6-15 Message CONSLrUCt fOrML........eevicireeiesiinniireece e eeeese s 32
Figure 6-16 Message flow from sending process t0 receiving processescoocevevueenee 83
Figure 6-17 Process declaration SyNtax........c.cceceeecrerernerneseseeninneeseseneecseseessssseseenes 86
Figure 6-18 Mode declaration SYNtaX.........ccceceeriinierieeritnsneesiniseeensesseeseesteseesesassessneeseess 90
Figure 6-19 Node declaration SyNtaxccceeccecreereriinniecninneinmenennenesseensetesesesssnens 90
Figure 6-20 Output message fOrM......c.cerriierirrrireriniere ettt s sanens 91
Figure 6-21 Stand along input MESSAZE USALEovceerrrrirerrerirerrerientiereseressteenessesseessnane 91
Figure 6-22 Explicit specification of destination & timestamp in bodyc.cceecrireeennee 92
Figure 6-23 Message count specification for output message arrays.......c..coeeceevererenenes 93
Figure 6-24 Adding default destinations to OUtPUL MESSAZEScevvervrereeeiesreneesersreenneens 94
Figure 6-25 Default time stamp SPecifiCationc.cececeecerernerrcmereiiernetereee e 95
Figure 6-26 Combined default destination and time stamp specification..........c.ccececuuene. 96
Figure 7-1 A simple message CONSLruCt in GeReriC.MSEGcceecuereeeererreereerersreeserennnnenas 98
Figure 7-2 Relevant output derived from Generic.msg........cocovevveeveececrvcnneennverseenencvnneenens 98
Figure 7-3 AddSubordinate.msg with one data member and three methods................... 100
Figure 7-4 C++ Files resulting from AddSubordinate.msg.............cccevvvceiveevcnncnnncnn. 100
Figure 7-5 An initialized array as a data member in a message Construct............cu...e.. 100
Figure 7-6 Initialization of the array specification in Figure 7-5......ccccccvvevvnnnecneenennenne 101
Figure 7-7 A simple process cOnstruct, SAape2D.Proc..........eccevvueeceeerererenseennnsrersessanens 101
Figure 7-8 Relevant output from SAGPe2D.proc...........ucououeeeeevevecennresreeceeesieeneeseneees 102
Figure 7-9 Simple.proc declaration of a subordinate process instance to process:Simple

.. 103
Figure 7-10 C++ declaration and allocation of a subordinate process.........cocvceererseruene 103
Figure 7-11 bounce.proc declaration of subordinate processes on non-default engines 103
Figure 7-12 Declaration and allocation of an array of subordinate processes 104
Figure 7-13 Simple.proc sample mode & subordinate nodes..........cccceevvrrrerccrreerceecennnne. 105
Figure 7-14 Simple.h C++ relevant components of header file for Simple.proc............. 105

xviii

Figure 7-15 Simple.cxx, message handling implementationcccceceeverieriecnninnnecnee. 106
Figure 7-16 hierarchy.proc with an output array of messagesc.cceeeeveerirereesscrcrnennes 108
Figure 7-17 Relevant portions of hierarchy.cxx implementing message arrays............. 108
Figure 8-1 Depiction of relationship between SODL processes and GVM objects........ 111
Figure 8-2 Message propagation for scene update requests........cooeververiieercreninennsseneens 112
Figure 8-3 Sample scene graph; Affine transformations are A,, polygons are P,........... 114
Figure 8-4 Portions of SODL scene graph displayed on multiple views.........ccccecuvinene 115
Figure 8-5 dode.proc, a simple view with a single affine transformation node and shape

.. 117
Figure 8-6 Output of dOde.ProC.......coovrierveririeniriieetie et 118
Figure 8-7 SODL $ide MESSAZINEG ..c..ceuvevererireeeieirecrrrrserescsisreeseseessessisseesssssessessssenens 120
Figure 8-8 Scheduling, revoking and processing messages in the GVM message queue

.. 121
Figure 9-1 Schematic of S1mplel.......cccooiiiiiiiiiinir s 123
Figure 9-2 The Simplel SIMulation.........ccoiveviiicieiic e 124
Figure 9-3 Process construct for the Simple2 simulator..........ccoovevviiiviicninnciiinnnnns 125
Figure 9-4 Message transport in Simple3cococeviiinneniinicinniiceec e 126
Figure 9-5 Simple3 process construct declarations...........ceeveveveeieicresecninninnsseneineeninnes 126
Figure 9-6 Source code for the Ping demo........cccoviveveinininiincccie it 127
Figure 9-7 Ping mMesSage tranSPOIT......ccueeueeiereerreeriirneerieeseeearerssessresseeseseeesssesseesessasenaes 128
Figure 9-8 Ring1 Token ring using a subSCIIption SEIVICEc.ccvverrierueenrcrveninecsenseneenes 128
Figure 9-9 Ring.proc; The parent process for the Ring1 simulation sample................... 129
Figure 9-10 Processes controlling (a) the subscription service and (b) individual ring

INEINIDETS. ..oiutiriiiitiinetistitessesterts et e e saee e se s bt e e e e s s e e e b e emn e e s e b et s sesass et s enesensesnnnsns 130
Figure 9-11 Message routing for Ring?2 simulationc.cccoevvirviiinnicninncinnincnnennene 131
Figure 9-12 Ring.proc; The parent process for the Ringl simulation sample 132
Figure 9-13 Process ownership in Brigade2 demonstration.........c.cceveeereversecreecreerennnes 133
Figure 9-14 Communication between parent and subordinate units in Brigade2 demo. 133
Figure 9-15 Unit.proc; Basic unit construct in the Brigade2 demonstration 134
Figure 9-16 soldier.proc; Declaration of the process:soldier construct in the Brigade2

EIMO .ttt ettt s e e neb e sae e 135
Figure 9-17 Message routing in the Relayl democccooeeeiciiiiiiinnciincciecreieeee 135
Figure 9-18 Source code for Relayl process CONSIIUCESeceeerreererreeeneenveneraeennenne 136
Figure 9-19 Relay2 demo message routing diagram...........cccoceeecrreenieneeeseerierienscrenenne 137
Figure 9-20 Relevant code for the process:relay and process:reflector constructs......... 137
Figure 9-21 Relevant code for the Relay3 sampleccoccerceriiieecincnenininneerec e 138
Figure 9-22 Relay4 support process CONSITUCESc.cecverueerereieneertesersenessessserseessensoseeees 140
Figure 9-23 process:child construct declaration for Relay4 sampleccccccocvvecennnee. 141
Figure 9-24 process:base construct in the Relay5 sample..........ccoceviriervvceenrnnescenennes 142
Figure 9-25 Code segments for instantiated Relay5 process constructs.......c..ccccceeueenne. 142
Figure 9-26 Message routine in the Relay5 sample.......cccocceveiveninieeiennieneneeieneecennns 143
Figure 9-27 Message routine in the Relay6 sample.......c.ccocoeveeverneeniniiinncienrnieesenennens 144
Figure 9-28 Relay6 process construct for the process:baseoccevrevieerreenerennnne 144
Figure 9-29 Relevant Relay6 code Segmentsccccceevuireeenencrsennrcesiereseeseseenesaeenens 145
Figure 9-30 Output from Bouncel demonstrationcccceerueeeerireeenenseesseronesseessennaees 146
Figure 9-31 ball.proc; Code governing ball motion and scene graph update 147

Xix

Figure 9-32 Messages for screen update in Bouncel demo.........cocvvvviviinivcniiiinnennn. 148
Figure 9-33 Bounce? output with 2,000 particles........cccoevviniririviiiininicicicecene, 150
Figure 9-34 Messaging to update the scene graph in Bounce2..........c..cccooviiiiininnncnnnn. 150
Figure 9-35 particle.proc — relevant code for updating scene graph in Bounce2............ 151
Figure 9-36 Brigadel Sample OULPUL......cccocevvereerminiinenencsice et 152
Figure 9-37 Output from the Hierarchy demonstrationc.cocceecvereereeciineenreecsiennnnes 152
Figure 9-38 Sensor track detection and change notification in Battle demo 154
Figure 9-39 Notification of sensor track detection and 108S.........coccveervirireriecririerncnaen. 155
Figure 9-40 Messages governing vehicle motion in the Battle demo..........ccocecueueneen. 156
Figure 9-41 Predefined Tank FOrmationscc.cceevrieniininicnniniecnnnnsinsenecviceeeeen 157
Figure 9-42 Messaging during formation MOVEMENL.........cccceceririririnieninnninsiissssnssneans 158
Figure 9-43 Fire control sequence for a tankcoooevciiiieennninninciiiicccieene e 159
Figure 9-44 Clean-up after a unit deStructioncccccoceeenrveerennieninienseeresieenecressc s 161
Figure 9-45 Shots of the initial platoon configurations in the BattleView of the Battle

EIMIO .ttt e s sae s 161
Figure 9-46 Red and Blue tactical views showing each side’s knowledge of the

ENVITOTMIENE ..cviiiiaeeniect e ire st et b st b e st e sesesne e e e an et e s b senesasesasesanaten 162
Figure 9-47 Tactical views shortly after the opposing forces encounter each other....... 162
Figure 9-48 Sample engagement of opposing fOrcescoveevernienriinsrseniecreccnerenneens 163

XX

“In theory, there is no difference between theory and practice;

in practice, there is.”
— Chuck Reid

Chapter 1. Rationale and background

1.1. Overview

Simulation in recent years has become increasingly important in understanding natural systems. In
particular, digital simulation provides a method of hypothesis testing, training, and planning that might
otherwise be prohibitive because of either cost or risk. For instance, it’s cheaper and safer to train nuclear
power plant operators on digital simulations than on fully functional equipment. The same claim can be

made for manned space flight operations, as well as, to a somewhat lesser extent, aircrew training.

Industry has become increasingly interested in simulation technologies as the cost of developing prototypes
has dramatically increased. An example of this would be the development of the Boeing 777 airliner.
Boeing designed and digitally tested the 777 for performance and manufacturability before ever building

the first prototype. These tests were conducted using digital simulation (Boeing 2001).

The military has also increasingly relied upon simulation to provide insight into deployment, operations
and support plans, and was instrumental in developing early flight simulators to provide additional training
hours to pilots. More recently, ground and naval combatants have used digital simulation for developing
tactics and training purposes. Simulation systems to assess the overall effectiveness of new weapons and
tactics are also in widespread use throughout the U.S. Department of Defense (DoD). It has become so
important that in 1991, DoD established the Defense Modeling and Simulation Office (DMSO) to

coordinate simulation activities throughout the department (DMSO 2001).

It was in the arena of military simulation that the notion of this dissertation took shape. In 1997, the author
was involved in a simulation exercise to ascertain the operational effectiveness of non-lethal weapons

under a variety of scenarios. The client organization insisted these exercises use a simulation system

known as the Joint Tactical Simulation (JTS)'. JTS did not have the capability to simulate the effects these
new weapon systems were thought to produce in the targets. Specifically, a target was either alive or dead.
Since the purpose of the weapon system was to coerce a behavior in the target, rather than to outright kill it,
there was a substantial effort involved in trying to get the simulation results to reflect the hypothesized

effects.

If there had been the capability to change the behavior of various objects in the simulation that end users
could modify while maintaining the overall system integrity, then the effects of these new weapons could
have been introduced quite simply. It would not have required re-verifying the entire simulation system,
but only the altered portions. This became the ultimate motivation for providing a framework for

describing simulation object behavior in an extensible manner.

The result of this line of thought, and the object of this dissertation, is the Simulation Object Description
Language (SODL - pronounced any way the reader prefers). SODL is an object oriented language, in that
it has the standard ability to inherit behavior from parent classes. It is also completely event driven, in that
object instances can only communicate with each other via message passing. This provides for the
possibility of allowing the simulation to be transparently distributed across a heterogeneous network of
computers while freeing the developer from actually producing the code to perform run-time
synchronization, networking, message sequencing and delivery required to ensure that distributed
simulations process messages in the proper order. Having stated this, we should point out that the actual
run-time system developed to test and support SODL programs runs only on a single processor at the time
of this writing. We took great care to ensure that it could easily be modified to a fully distributed

implementation.

Digital simulation is performed in any of a number of fashions, some of which will be discussed herein at
some length. A digital simulation is broken down into a finite sequence of events. When each event is
handled, the state of the simulation changes in some fundamental way. The difficult part for some types of

simulation is ensuring that these events are handled in the proper order. This is not particularly difficult for

' JTS was combined with the Joint Conflict Model (JCM) to form the Joint Conflict and Tactical Simulator
(JCATS). These simulators were all developed at the Lawrence Livermore National Laboratory, Livermore

simulation systems that run in only one process. In fact, events normally have some sort of time stamp
associated with them, which, if these events are generated out of their intended processing order, can be
placed into a priority queue or some other sorting mechanism to ensure that they are processed in the

correct order.

The situation is not nearly as clear-cut in distributed simulation. On the one hand, if multiple processors
can be brought to bear upon a simulation problem, then an answer can be arrived at in a shorter period of
time than would otherwise be possible. On the other hand, issues such as network latency, lost packets, or
packets received out of order, and clock drift between CPUs in a distributed system can cause
desynchronization between those nodes to occur, allowing events to be processed out of order. When

events are processed out of order, it creates what is known as a causality error (Fujimoto 1990).

There are two basic approaches for dealing with these causality errors in distributed simulation.
Conservative synchronization (Bryant 1977), (Chandy 1979, 1981) seeks to avoid creating these errors by
blocking processing on nodes in a distributed simulation system until additional processing can proceed
without the risk of creating a causality error. Alternatively, optimistic synchronization (Jefferson 1982,
1985a, 1987) provides a mechanism for detecting and recovering from these causality errors. It does this
through state saving, allowing for the possibility of recovery from potential causality errors. When one is
actually encountered, a cascading rollback and event revocation algorithm is used to restore the simulation
system to a state whereby processing the event is temporally consistent with the state of the simulation.
Since it does not block, it can provide a significant speed-up in simulation execution (Fujimoto 1990). The
SODL implementation discussed herein uses an optimistic simulation engine to perform process

synchronization.

Neither of these approaches is appropriate for all simulation systems. Systems where there is a high degree
of interdependence between objects within the simulation may lend themselves to a conservative approach.
Optimistic synchronization may be appropriate for systems in which the components are interdependent to
a limited extent. (Fujimoto 1990) provides a more extensive analysis of the benefits and limitations of each

approach.

CA. For more information refer to (LLNL 1998).

The primary focus of this dissertation is the structure of the SODL language. Even though we implemented
a sequential (i.e. non-distributed) runtime system, its usefulness stems mainly from its ability to test the
SODL language structure. The primary rationale for this approach is that the body of work on this subject
continues to grow. The run-time system provided is intended to act as a framework for incorporating these

new results later, and should not be considered a final product.

1.2. Alternative approaches

There are a number of different approaches available to simulation system developers. What follows is a
list of the various types of approaches that are currently in use, their strengths, weaknesses, and some

examples. Table 1-1 provides a brief overview of these alternative approaches.

Approach Description

Full-Implementation All aspects of the simulation engine are built from scratch for a particular
system.

Modular System Portions of the simulation engine are linked into a final executable to perform

some of the more mundane aspects of simulation such as message delivery and
node synchronization. Calls to these library functions are still needed to make
use of the simulation engine.

Simulation Languages | The simulation engine is provided as a run-time environment in which
simulation developers describe the behavior of the simulation objects. It is
rarely, if ever, necessary for a developer to make any direct calls to the
simulation engine for messaging, sequencing, or synchronization.

Table 1-1 Alternative Simulation Approaches

1.2.1. Full implementations

Early digital simulations were implemented first in low-level machine languages, and later, as compilers
became available, in traditional structured programming languages such as Fortran, C, and others. All
aspects of the simulation engine, from event sequencing through node synchronization were written and
custom tailored to the specific system implementation. The JTS and JCM simulators mentioned earlier
evolved from simulation systems developed in the 1970’s (LLNL 1998). One can open any journal on

simulation to find this approach in use, even to this day.

More recently, beginning in the late 1980’s, object oriented programming languages such as C++, Modula-

2, and Smalltalk made certain aspects of simulation development somewhat easier and significantly more

intuitive. This increased ease did not extend to the core simulation engine, however. Still remaining were

the complexities associated with process synchronization in distributed simulation systems.

This approach has the advantage that there is a substantial amount of control developers have over
optimizing system performance for a particular task. This flexibility, however, comes at a rather
substantial cost in coding and debugging effort. This is particularly the case for distributed simulation,

where node synchronization issues require extensive and complex code to properly address.

Some examples of full simulation system implementations are listed in Table 1-2.

Name & Producer Description

A sequential simulation system with a distributed user
Joint Conflict and Tactical Simulator interface, allows multiple operators to perform combat
Lawrence Livermore National | exercises to test new tactics and weapon systems. Used also
Laboratory for training purposes. Written primarily in C++. Users
(LLNL 1998) include the U.S. Departments Defense, Energy, and

Treasury, as well as some international users.

A distributed simulation system that is currently under
development, using the High Level Architecture (HLA) Run
Time Infrastructure (RTI) as a packet transport mechanism.
It is intended to provide an extensive simulation capability

Joint Simulation Systems (JSIMS)
Defense Modeling & Simulation Office

JSIMS Program Office for conducting training and analysis and doctrine
development.
. Diffract is an optical simulation system used for simulating
Diffract . .
coherent light through optical systems. It can be used to
MM Research . ical . . .
Tucson, AZ simulate optical aberrations and interference patterns in

optical equipment (Mansuripur 1997).

Table 1-2 Some simulation systems used for analysis or training purposes
In addition to the specific simulation systems mentioned in Table 1-2, there are numerous other simulation
packages designed for fields as diverse as computational fluid dynamics to manufacturing. Others are
designed to provide insight into the motions of stars and galaxies, to the workings of the smallest known
particles. Many of these custom simulation systems, though very capable in what they do, are intended for

a specific use that does not readily extend to other uses.

Another area in which simulation is gaining some popularity is in the field of interactive digital
entertainment (by which we mean computer video games). Most of these are built on proprietary special
purpose simulation engines that facilitate event sequencing. Many of the newer games provide the ability

to perform distributed game play over the Internet or via direct dial-up. Some recent examples of these

interactive games are listed in Table 1-3. Distributed game play has become increasingly popular, as more
households are equipped with dial up and broadband Internet access. There are even massively parallel
games in which an entire persistent virtual world has been created. Players can come and go as they please,
joining forces with other players to battle against computer-controlled entities, or against other players.
With faster Internet access becoming more widely available, online gaming is likely to continue growing in

popularity and the games themselves will also continue to increase in their complexity as well.

Name & Publisher Description
. A successor to the popular SimCity. The Sims allows players to
The Sims
Electronic Arts cqntrol people in the virtual environment as they interact with others.
Virtual characters are affected by the inputs their real life controllers
Players control a virtual army in an immersive 3-D environment and
Battlezone and Battlezone II can issue orders to their subordinate units, manage resources and
Activision engage in combat all from a first person perspective. Multi-player
modes are available to play over the Internet and over a LAN.
Players can take control of one of a variety of aircraft, each modeled
Flight Simulator 2000 Pro to resemble the actual performance and handling characteristics of
Microsoft the real world counterpart. Microsoft also provides the capability to
download from the Internet current real-world weather conditions.
A massively parallel virtual and persistent world where players
Ultima Online control a virtual character who can fight wars with other player, build
Electronic Arts structures, or even complete cities. Any changes the players make
persist so that others may interact with those changes.

Table 1-3 Current popular games using simulation technologies

1.2.2. Modular simulation systems

It is sometimes possible to encapsulate portions of the central simulation engine functions in a collection of
libraries, such as event sequencing and some rudimentary message delivery. Some libraries may perform
network communications and synchronization required in distributed simulation. Others provide additional
functionality defining, for instance, the behavior of simulation objects incorporated into a separate
development initiative. The intent of these approaches is to use the libraries with a more commonly
available programming language such as C/C++, Fortran, or Java. Other approaches, such as CORBA,
require programmers to write portions of the simulation system in a different language, the Interface
Description Language (IDL) in the case of CORBA. A compiler translates this code into a more common
object oriented language. Standard compilers then compiles and links with the run-time infrastructure in

the library.

Name & Developer Description
A semi-distributed simulation system which has a
number of military entities described in detail as a

Modular Semi-Autonomous Forces (ModSAF) series of C modules. Simulation entity behavior is
United States Army Simulation, Training, and | intended to mimic real world behavior to facilitate
Instrumentation Command (STRICOM) training and analysis for military operations.

Simulation state is stored in a central database that
is accessed via run-time engine (STRICOM 1999).
HLA provides a run-time infrastructure to

High Level Architecture (HLA) facilitate distributed simulation. It primarily deals
Defense Modeling and Simulation Organization | with network communications, not
(DMSO) synchronization, which must be performed in

custom simulation engines.

CORBA is a distribute object system that can be
applied to simulation. As in HLA, a
synchronization mechanism must be provided to
ensure events are processed chronologically.

Common Object Request Broker: Architecture
(CORBA)
The Object Management Group

Table 1-4 Examples of modular simulation systems
While this approach does free developers from writing the complex code associated with these functions,
there is still a great deal of interfacing with those libraries that must take place. Considerable time must be
spent on the part of the developer to actually learn the API for the library. It is also usually necessary, in
order to get the proper results out of the system, for the developer to have a keen understanding of the
manner in which the routines or classes function (particularly in the case of libraries which provide object

behavior descriptions and those that provide synchronization in distributed simulation).

Some examples of systems that provide this modular approach are listed in Table 1-4.

1.2.3. 4" generation simulation programming languages

Recent years have seen the development of a number of special purpose simulation languages. Each of
these has been designed to fill a certain niche. The majority of these languages have been sequential
systems, by which we mean that they are intended to operate on only one host computer (i.e. they are not
distributed). They can generally be broken down into two general categories: continuous time simulators
(CTS) and discrete event simulators (DES). The biggest difference between CTS and DES systems regard
how events are generated. CTS events are generated sequentially, while DES systems may generate their
events out of order. Most simulation languages are sequential systems, not capable of operating in a

distributed manner. Some of these sequential systems are listed in Table 1-5.

Name & Developer Description
Provides a graphical user interface to perform
continuous time simulation of systems governed

%ﬁ; l;\]/}];ﬁlWorks differential equations. Fully interoperable with
Matlab, and extensible with custom routines from
other programming languages. (MathWorks 2001)
Graphical tool for simulating and analyzing

ProModel processes. Extensive analysis tools are provided

ProModel Corp. as well as the ability to export data to third party
spread sheets for custom analysis.

SOAR The SOAR project is a combined effort between

Carnegie Mellon University, University of | several academic institutions and commercial
Michigan, University of Southern California, and | ventures. It intended purpose is to bring inteiligent
others, Soar Technologies, Explore Reasoning | behavior to simulation entities. It is built on top of

Systems, Inc. the Tcl scripting language. (Rosenbloom 1994)
ModSim, ModSim II, SimProcess, SimScript Programming languages for sequential simulation.
CACI ModSim and ModSimlI are based on Modula-2.

Table 1-5 Some commercially available 4" generation sequential simulation packages
While sequential simulation technologies are useful for small to moderately sized problems, there are
problem scales where the additional computing resources available from distributed simulation become
necessary. SODL, the language described in this dissertation, is in this category, along with two others:
Yet Another Distributed Discrete Event Simulator (YADDES) (Priess 1990), and A Parallel Object-

oriented SimulaTion LanguagE (APOSTLE) (Wonnacott 1996).

YADDES programs are translated into C and compiled using a standard C compiler. As such, much of the
benefits of object-oriented programming are not realized in YADDES. It comes with both an optimistic
and a conservative synchronization engine for handling messages and processing state changes. The fact
that it can use either paradigm leads to some additional complexity in the language structure, namely that in
order to realize any efficiencies in the conservative techniques, the process topology must be specified at
compile time. It accomplishes this through an extensive specification of connections between topologically

adjacent processes.

APOSTLE is similar in intent to YADDES, but differs by generating C++ code. This enables APOSTLE
to be an object-oriented language, which it is. However, like YADDES, it is designed to work with both
conservative and optimistic synchronization engines (though as of this writing, only the optimistic engine

had actually been implemented). This again requires that the topology of the distributed simulation be

specified prior to run time, by stating which outputs feed which inputs. One restriction on the APOSTLE

system is that it only runs on Sparc platforms.

1.2.4. Distributed simulation standards

During the 1980’s, the U.S. Department of Defense introduced the Distributed Interactive Simulation (DIS)
standard allowing host processes performing a distributed simulation to communicate with each other using
a common interface. Extensive libraries were developed for DIS, and it became a popular method of
distributing simulation systems. Any DIS certified simulation system was able to send packets to or
receive packets from any other DIS compliant system. This allowed different simulation systems to
operate with each other, even though they had not originally been designed to do so. That is, simulation
system X while DIS compliant may have been intended to work with simulation systems Y and Z.
However, Z may not have been designed to operate with X. Thus, any messages passed from X to Z might

be ignored when they arrive at their destination.

These interoperability issues led the DMSO to propose in 1995 the High Level Architecture (HLA). Here
constructs called “federations™ are established for each group of simulation system developers wishing to
have their simulation systems interoperate (Kuhl 1999). These federations define standard object types and
message formats allowing the different simulation systems within the federation to communicate with each
other. DMSO has provided the HLA Run Time Infrastructure (RTI), an extensive set of communications
routines, similar to CORBA. Actual distributed simulation implementations making use of HLA require
developers to write a great deal of code to address the specific issues pertinent to their system’s
requirements. Apart from the format of the interface between components, a great deal of effort is also
required to ensure compatible semantic content (i.e. ensuring that the same message means the same to all

of the simulation components).

1.3. SODL system description

Neither YADDES nor APOSTLE makes assumptions about the underlying mechanism managing node

synchronization in a distributed simulation. Since some methods® require a rigid pre-specification of the

? Conservative synchronization, described in more detail in Chapter 2 is one such mechanism.

communications topology for optimization purposes, this topology must be specified regardless of the
synchronization method employed. This provides additional opportunities for programmers to introduce
errors and complicates message passing in a purely dynamic fashion. More fundamentally, this
specification requires modelers to think in terms that may not be appropriate for their specific application.
For instance, some models might naturally require arbitrary interaction between virtual objects. This
means that the communications topology would need to be fully connected, or some mechanism to forward

messages needs to be introduced into the model.

This thesis introduces the Simulation Object Description Language (SODL) and takes a somewhat different
approach. Like YADDES and APOSTLE, we designed SODL to facilitate distributed discrete event
simulations (DDES). It does this by converting SODL source files into C++. It is therefore, like
APOSTLE, an object oriented language, though perhaps not to the same extent. Where it primarily differs
is in its assumption about the underlying simulation engine, namely that it will always be optimistic’ in
nature. Optimistic synchronization methods do not take into account communications pathways of a
distributed simulation in any of its optimizations, freeing developers from specifying the distributed
simulation system topology. Messages are simply addressed and delivered to the members in the recipient
list. This notion makes SODL, a completely event driven language requiring inter-process communication

to occur exclusively through message passing.

The guiding principle directing design decisions of the SODL system has been to make as clean a split as
possible between the simulation engine and the behavior of the objects within the simulated environment.
The behavior specification derives directly from the model description, and only rarely do simulation
system restrictions interfere. Thus, SODL provides developers the freedom to express object behavior in
terms that naturally arise from a model without having to be distracted with performing unnecessary run-
time system declarations or calls to the underlying simulation engine to handle some action the engine

could perform on its own.

SODL provides a framework upon which simulation system developers can simulate models that make

extensive use of the notions of stimulus-response. That is, each of the objects in a distributed simulation

10

system has a state and makes changes to that state based upon external stimuli. These stimuli can originate
from any of the other objects in the simulated environment and need not flow over fixed communications
pathways. SODL does retain the ability to optionally specify the communications pathways, but the
decision to use this feature is solely at the discretion of the model maker and simulation system designer,
and is not imposed upon them by constraints within the SODL language specification or its run-time
system. Thus, most any model that can be framed in terms of stimulus-response can be directly coded into

SODL source files from such an interaction specification.

There are some drawbacks to this approach. By removing the necessity of defining the topology, we lock

ourselves into an optimistic approach, which is not always the best for a given application (Fujimoto 1993).

Another problem is that there is no convenient way for one object instance A to directly manipulate or
access the data of another instance B. Instead, A must send a message to B, and it is B’s responsibility to
manipulate its own data, or to reply to A’s query about its internal state data. While this may seem
awkward to code, it does more closely reflect the way things happen in the real world. That is, when
objects interact in the physical world, they do so primarily by sending messages of one form or another.
One person will speak to another. When an anti-armor round strikes a tank, it can be thought of as having
sent the message “T just hit you” to the tank. Thus SODL’s use of pure-event programming is, in the end,

rather natural.

SODL draws a distinction between simulation objects (which SODL calls processes) and the data that is
transferred between them (which SODL calls messages). Messages can have arbitrary data fields and
methods to act upon them in a manner analogous to objects in traditional object oriented programming
languages. The message with its payload is transferred between objects in a completely dynamic manner
(meaning that no pre-specified topology is required to direct the message traffic). Processes, in addition to
having internal data and methods, are able to send and receive messages. The process modifies its internal

data upon receipt of a message.

* Optimistic simulation is described in more detail in Chapter 2.

11

SODL processes are also modal in nature; they can turn modes of operation on an off based on the message
stream they receive. This allows a process to act one way upon receipt of a message at one time, and act
completely differently upon receipt of another message with the same payload while in a different mode.
This conveniently provides developers with the capability of radically changing a simulation object’s
behavior to a given stimulus (message receipt) with little difficulty. For instance, a simulation of an ant
colony might have the ants behave in one fashion when they are searching for food, another when they
actually find some and gather it, and still another when their nest comes under attack from a neighboring
colony. A developer need only change modes when a certain condition is met, thereby fundamentally

changing the object’s behavior.

1.4. Scope

The primary purpose of this research was to provide a logical framework for defining object behavior in a
virtual environment. To this end, we introduce a conceptual framework for discussing simulation, and
upon this framework, define a language structure allowing simulation system developers to easily and
quickly specify these object behaviors. When it became clear that a stimulus-response description could
provide this specification, distributing the simulation across a network of computers seemed like a logical

but secondary extension of the underlying work.

What we specifically avoid in our analysis are any measures of overall system performance. The rationale
is that the current SODL run-time system can be modified to optimize its performance by taking advantage
of new algorithms or techniques. We instead concentrate on the language specification itself and note that
there is little in the way of programmer interface with the simulation system. This allows simulation
system developers to concentrate on implementing a simulation of a model, rather than with the mundane,

often error prone additional work other simulation systems require.

We provide in this document a description of the sequential simulation system, intended to simulate a
distributed system and used to test SODL. In addition, a number of sample programs and associated
descriptions are provided to gain some insight into the capabilities and limitations of the language

specification and any run-time system that might eventually be employed to support it.

12

Chapter 2. Digital simulation

2.1. Overview

sim-ulate — vt. 1. To give a false appearance of; feign 2. To look or act like.*

Simulation has historically allowed scientists and analysts of various fields to test hypotheses about
naturally occurring or hypothetical systems. For much of its history, simulation involved either a series of
hand computations or analog devices designed to simulate some physical system. More recently, digital
computers have allowed more sophisticated simulations in terms of their computational complexity, and
been used in a wider variety of ways. Consider Bernoulli’s description of airflow through a venturi. Prior
to digital computers, acronautical engineering relied heavily upon hand computations and wind tunnel
testing (analog simulation). With the advent of digital computer technology, we now have the ability to

cheaply and easily perform high fidelity digital simulations of airflow around an airframe.

While digital simulation systems are useful in describing physical systems that assist in analysis, other have
been applied to training people to operate equipment that is either too expensive or too dangerous to
actually train on. Examples of simulation for training include space flight operations, as well as nuclear

power plant operations.

For digital simulation, we can create virtual environments with which people can interact more safely, and
in some cases more cost effectively than the real-world systems. Yet, these virtual environments only exist
as a collection of 1’s and 0’s in 2 computer’s memory system and only reflect the real system in a way that

is meaningful to those conducting the analysis or participating in the training.

The range of applications in which simulation might be useful is quite varied. As such, no one approach to
simulation will be appropriate in all circumstances. In some instances, a few lines of equations scribbled
on the back of an envelope might be sufficient for a particular purpose. In others, hundreds of digital
computers working in concert with each other might only scratch the surface of some complex system

dynamics.

* Webster’s New World Dictionary of the American Language, David B. Guralink, Ed. 1979

13

For purposes here, we will be considering primarily simulations performed with a digital computer.

2.2. Modeling

Before actually getting to the point where a simulation is of any use, we quite often need to describe in
some unambiguous manner the dynamics of the system under consideration. Modeling is this process of
describing the system, and although it is not dealt with in any detail here, it is an integral part of the overall
simulation process, and needs to be adequately tackled prior to writing any code. The modeling process in
many cases will provide significant insights into a system’s dynamics — insights that may actually obviate

the need for simulation.

Before dealing directly with modeling, however, we need to provide some context. What follows is a
framework around which we might construct some pertinent notions and to promote an understanding of
some of the constraints inherent in digital simulation. While we make no claim as to whether or not any the
following formalization of the modeling and simulation process appears in prior work, we developed and
included it here because of its apparent absence in texts on the subject. Prior to formalizing this context,

we provide a brief overview of these notions.

We start by introducing the notion of a universe. A universe may have multiple time dimensions (called
the universe’s temporal component). For each element in the temporal component, the universe has exactly
one state. We normally are interested in universes with only a one-dimensional temporal component
subject to some strict ordering. This induces an ordering on the universe’s states, and allows us to impose a

causal relationship between states.

Since a universe has a broader scope than we are normally interested in, we pare away much of the state
information for a universe and concentrate upon one small portion of the universe, called a system. For the
sake of discussion, let us consider the system of an object undergoing projectile motion under the influence
of gravity. When considering this physical system we can ignore many of the minute influences that act
upon this object, and look only at the very limited scope of the object and the primary gravitational sources

acting upon it.

14

We then develop a model describing the system. Modeling formally describes how the system behaves. In
the case of the object undergoing projectile motion, we look to Sir Isaac Newton’s laws of motion to
describe how the projectile moves. We note that the model is something that we humans have done to
describe a physical process. It in no way dictates how the physical system really behaves. For instance,
Newton’s laws of motion are only an approximation of how objects really move. Finer predictions are
possible with the introduction of Einstein’s theories on Relativity, The physical system always behaved in
a certain way regardless of what people say or think about it; it took Newton and Einstein to propose

models describing this behavior.

Finally, we will want to study this model, to see how well it predicts physical systems, and perhaps learn
new things about the system. We use simulation to perform this prediction. In the case of ballistic motion
in a vacuum, we can simulate the behavior of physical systems quite easily with a pencil and paper. By
employing a digital computer, we can incorporate other aspects of Newtonian motion (windage, or N-body

interactions) to perform higher fidelity simulations in shorter amounts of time.
From here, we formally introduce the concepts outlined above.

Given an indexing set P and family of sets V,,, pe P, let us define the Cartesian product pp

pl’ = H Vp (2_1)

peP

and the family of canonical projections (Hungerford 1974) 7,

R, pp oV, 22)

where 7,(v)=v,, the p™ component of v.

From this, given a set of parameters P, we can define a universe Up

15

Upcp,= H Y, 2-3)

peP

That is, for purposes here, the universe is simply a subset of the Cartesian product of the sets V,. In order to
maintain a degree of generality, we make no assumptions about the set P, or any V,, pe P, specifically, we

make no claims as to their cardinality nor of the elements they may contain.

Let TcP, P’=P-T. We can redefine Up in terms of P’ and T by

Uy ppXp; (2-4)
We refer to T as a temporal component of P exactly when all of the following conditions are both satisfied:

Ul For all te pr there exists a unique p(f)e pp- such that (p(2), f)e Up.

v U,={@e))

repyr
When 7= is the only temporal component of P for the universe Up, then we say that Up is a static
universe. When Up is not static, it is said to be a dynamic universe. Though in general there is no
restriction on the set T, we normally think of universes having 7={R}, where R is the set of real numbers,
as their only temporal component. This provides a natural ordering of the states in the universe, and offers
a convenient glimpse into how we might perform digital simulation — by calculating states in chronological

order.

‘We will not usually be interested in considering the whole of Up, but rather some subspace of it. Therefore,

given a universe Up, we define a system SgXpr over a collection of parameters RCP’ as

Spxpre |V
e xel;gr @-5)

We then define r:pr— Sk such that

7(r(®) = 7(p(t)) for all e prand icR. (2-6)

16

to ensure that the parameters in the system take on the same value as their associated parameters in the

larger universe given the same time value.

From this, we can create a model in which we simplify the actual behavior by aggregating system

parameters and create rules governing how these parameters interact.

First, we pick a finite set D to serve as an index for parameters in our model MpXpr. We then choose a
function f:R—D to aggregate all the system parameters into more manageable modeling parameters. So as
not to overly complicate the model, we will impose the restriction on D and f that for all ye D, there exists
xeR such that fix)=y. That is, f is surjective. If we were not to have this limitation, we could have a
collection of model parameters that would need to be tracked, even though there is no analogous collection

of parameters in the system Sk we are considering.

Next, we need to define another surjective function g:pr—>pp aggregating the state of the system Sg into
some state in the model Mp. The specific definition of this function, like f, is at the discretion of the

modeler.

From this we get the definition of a model over a collection of modeling parameters D, Mp,r by

M,xp,c ||V,
Pt xelf—)gr @7

and we define d:pr -»Mp such that
m(d(D)) = m(g(r(H)) for all t€ prand ie D Q@

(2-8) requires the model to approximate the system Sgxpr to some problem specific degree and requires a
great deal of discretion on the part of the individual defining the model to determine an acceptable error

level.

The last part of the model is to describe how the various parameters interact with each other. This involves

explicitly defining the family of functions m{d(#)) in a manner that will satisfy (2-8) to the desired degree.

17

An important consideration here is that models are closed, in that there is no influence upon the model
parameters from a source other than other model parameters. Any such external dependence would
become part of the model. There is no restriction on the system from which the model is derived.
However, we are generally well advised to pick the system parameters wisely so that there is a reasonable
expectation that no outside influence can significantly adjust any of the system parameters. We make no

claim about the nature of the behavior of Up or of how its parameters interact.

As mentioned earlier, the process of modeling a system through this abstraction is at least as important, and
quite often just as informative, as actually performing a simulation. It can provide a great deal of insight
into the underlying dynamics of the system that would have otherwise been unrealized. Picking the right
parameters in the system and properly aggregating them is critical in developing an adequate understanding
of the system under consideration. It is somewhat of an art form to create a model, given only raw data and
observations; an art form we will explore no further in the confines of this publication. There is a great
deal of material available for creating models and some assistance in this regard may be found in books
such as (Fishwick 1995) and (Morrison 1991). Both have an extensive list of additional references that

could be useful in specific modeling applications.

2.3. Digital simulation

From this point on, we will only be dealing with universes with the temporal component 7={R}, the
collection of real numbers. This imposes a complete order on the universe’s states if we consider them in
terms of the time at which each state occurs. When performing a simulation, we are concerned with
causality. That is, a universe’s state p(¢) can only be affected by earlier states p(s) s<¢t. Simulation will

seek to calculate the state of models for a collection of times of interest to the modeler.

Once we have a model of a system, the next task is to get a computer to tell us interesting things about the
model we can project back to the system under consideration. The problem with digital computers,
however, is that they are not very good at expressing with arbitrary precision state values we would like to
consider in our model. They are also hamstrung by the fact that each operation a computer performs

requires some non-zero time to compute. We formalize these constraints as follows:

18

1. Digital computers perform only finite precision arithmetic

2. Each operation on a digital computer takes some time, >0, to perform
We note that by virtue of these restrictions, each simulation of a model must be broken down into a finite
number of discrete, contiguous intervals. We will denote these intervals Io, I;, ... I,; and define each by

I=[t;, t;11) with to<ti< ... <.

Condition 1 also requires us to limit our notion of the sets D and T. Dealing with T is a straightforward
matter if we define R* = {to, t15 ..., 151}, and f:{R*}. D, on the other hand, is not as easily handled in a
general and formal sense. Each set of model parameter values W;, ie D, must have a finite collection of

associated approximations W," that a digital computer can represent and manipulate.

We once again perform an abstraction, this time from MpXpr to the digital simulation LpXprs.

Lyxp.c[]w: xp,

xeD

(2-10)

We go on to further describe the properties of LpxR" with If'-fi<g, €>0 and sufficiently small, we define

l: pT*_)LD
ml(@t")) =~ md®O) V '€ prs, i€ D (2-11)

All of these abstractions and simplifications of the underlying system lead us inevitably to conclude that
there can be a substantial difference between a real world system, and a digital simulation. This in no way
mitigates the importance of simulation, but instead serves as a caution not to put too much credence in the
output of one, especially if sufficient testing of the model and an associated simulation has not been
performed. Specifically, there needs to be on the part of the modeler a rather deep understanding of the
system being considered. This understanding needs to include an awareness of the degree of dependence
upon initial conditions of the system (how chaotic the system is), and how closely the model tracks the

system’s behavior in reality.

19

To address these concerns, there is a Validation, Verification, and Authentication (VV&A) process within
the United States Department of Defense whereby models and simulations are fine-tuned to more closely

reflect the way the system actually works (DODI 1996).

Verification involves testing a simulation system to ensure that it reflects to an acceptable level of accuracy
the specific model behavior for the system under consideration. That is, it verifies that the simulation
system produces results that are consistent with the model it is supposed to simulate. Validation is the
process of making sure that the model is a reasonably accurate representation of the system under
consideration. This is normally accomplished after verifying the simulation by comparing results from the

simulation with observations of the physical system.

Validation and Verification are two steps in an iterative process. A model is initially created to represent
some system. It then is coded into some sort of digital simulation. Results from the simulation are
compared to those predicted by the model, to ensure that it accurately reflects the intentions of the model
makers. Once that is done, the simulation results are compared against real-world data to see if the model
is an acceptable portrayal of the real world system. Refinements to the model are then made so that it more
closely represents the system. These changes are then coded in the simulation, which must, in turn be
verified again. This process is repeated until the simulation produces results within an acceptable tolerance

of the real-world system.

Once the model and simulation are validated and verified respectively, an accreditation agent will certify
that the model and simulation are fit for some specific use. Any enhancements to the model will require

repeating the full VV&A process. Simulation changes require only verification and accreditation.

There are a number of techniques for actvally performing the simulation on a computer. The techniques
can be grouped into two main camps: Continuous Time Simulation (CTS) and Discrete Event Simulation

(DES).

20

2.3.1. Continuous time simulation

Models requiring CTS approaches change their state in a continuous fashion and represent some continuous
change in the system being analyzed. Such models quite often have as their rules a collection of partial
differential equations governing parameter interaction. The field of numerical analysis is filled with
numerical methods for simulating such equations. Euler’s method is a simple approach that may be
appropriate for some applications. Other systems may require more complex approaches such as Runge-
Kutta. In any event, (Press 1992) provides a rich source of C code and some brief explanations for many of
the most popular numerical methods for simulating systems of partial differential equations. (Atkinson
1989) is more theoretical in nature, not providing much in the way of source code, but providing helpful
insights into some of the more common approaches. Finally, (Isaacson 1966) provides even more insight

at the cost of being quite difficult to read.

A continuous time model is then formally defined as an MpXpr such that there exists soe pr such that for all

£>0 there exists s;€ (5o-€, So+€) satisfying

d(so) # d(se) (2-12)

As indicated above, even though the model state may continuously change with respect to time, the
limitations of digital simulation require that it be broken up into suitably small time slices. Certain
numerical techniques may change the size of these time slices, so we will make no specific assumptions
about them. The goal of the simulation developer is when given the history I(ty), I(t)), ... , l{(tn.1) to

determine I(z,,) for m <n.

Since CTS systems are not the focus of this dissertation, we will not discuss them any further. More
information on CTS systems is available in books such as (Hockney 1988), which offers a very extensive

list of references that can be useful for specific applications.
2.3.2. Discrete event simulation

Models that can be thought of as changing in some fundamental way at only discrete instances of time are

known as discrete event models. Though the system the model is meant to represent may be changing

21

continuously, the model need not reflect that change. This is especially true for models of continuous
processes, the partial differential equations of which can be exactly solved. Ballistic motion for instance
can be solved exactly if certain simplifying assumptions can be made. Though an object undergoing
ballistic motion is continuously changing its position, the parameters governing that motion are only

changed at discrete instances of time. Thus, it can be modeled quite simply using a DES system.

Like CTS systems, DES systems are broken into discrete time slices. Unlike CTS systems, however, the

model state is considered static between these iterations. Specifically, for all te [t,,, t,,+;), 0<m<n and for all

s€ [t,.1, 1), 0<p<n we have:

d(tlﬂ): d(t) (2_13)

de,)= d(s) 10

This translates well into the actual simulation, Equation 2-10, since we are forced to deal with things in

discrete time slices by virtue of our restrictions.

Another major difference between CTS and DES systems is that the events needing to be processed in a
DES system may not be generated in the order they are to actually be processed’. This has the potential to
impact simulation system performance since sorting an unsorted list of objects has Q(n-logn) time
complexity. Practically speaking, however we might be able to do a little better. First, we note that we can
never schedule an event to take placé in the past, since that would violate causality. If we can further
assume that the number of pending events does not exceed some constant value M (which is independent of
n the total number of messages processed in a simulation run) then insertion into the pending event queue
can be performed in Q(logM) = Q(1) time. Thus the overall time complexity for processing n events
actually ends up being Q(n-logM) = Q(n)-Q(logM) = Q(n). This is a reasonable simplifying assumption. If

there is no such M then the number of pending events is not bounded, and will grow to fill the system

® This is perhaps the most important difference between continuous time and discrete event simulations. If
discrete events are generated out of order, a discrete event simulation system is required to ensure that they
are processed in the proper order.

22

memory eventually causing an abnormal termination of the simulation. In such cases, we will have to

bound n.

2.3.3. Distributed discrete event simulation (DDES)

The focus of this dissertation is on distributed discrete event simulation. By this, we mean a discrete event
simulation that is performed in a multiple instruction, single data (MISD) or a multiple instruction, multiple
data (MIMD) environment (Fishwick 1995). Significant speedups can be achieved when additional
processing power is applied to a simulation problem. The major complication in doing this stems from the
fact that events need to be processed in the proper order, requiring a certain level of synchronization
between the various nodes in the distributed simulation. This can be mitigated largely in MISD simulation
topologies with some additional code to provide for proper synchronization. This is not nearly as
straightforward in the case of MIMD topologies. It is not hard to imagine a circumstance whereby a
message is delivered for processing to a node in a distributed simulation, only to discover that the node has
already progressed beyond the intended processing time of the incoming event. Such errors are called

causality errors (Fujimoto 1990).

At this point, we introduce notation common in most of the literature on distributed discrete event
simulation, that being Physical Processes (PP) and Logical Processes (LP). If we further partition D into

the N sets Dy, Dy, ..., Dy, we can induce a collection of physical processes PP,-*, i<N, by

T senur (2-15)
with the following properties for each PP;’, i<N and we can define PP;:Ur—>PP;" which satisfies
7 (PP(1)) = n(d(?)) for all te Ur, xe D; (2-16)

This then induces the logical processes LP;" similarly by

" enur (2-17)

23

and we define LP;:pr»—LP;" so that it satisfies
mLP (1)) = m (1)) for all t€ pr+, xe D; 2-1)

From this point, we will drop the * from LP;" and PP," when referring to the logical and physical process.

We will explicitly use LP(f) and PP(¢) to refer to the states of LP; and PP; at time ¢, respectively.

Simulation then becomes defining or computing the collection of functions, e;j(t,, #:), called events, that
transform LPj(t;1) to LP{t,) for j<N, O<g<k<n. This notation indicates LP{t,) scheduled the state change
from LPj(ty.1) 10 LP{ty). These events can be thought of as messages transmitted between logical processes,
containing enough information to allow receiving logical processes the opportunity to properly change their

state. Thus, upon receipt of a message LP; will change its internal state and issue additional output events.

DDES Approach | Description

Causality errors are prevented from occurring, usually through some sort of

Conservative blocking mechanism on each LP;.
L, Causality errors are detected and, when they occur, the simulation system will
Optimistic
recover from them.

Table 2-1 Distributed Discrete Event Simulation approaches
In distributed simulation, each LP; could reside on different host processors, making communication via
message passing a natural mechanism for inter-process communication. The problem becomes how to
order events on each of these logical processes without creating causality errors. Alternatively, an
approach at distributed simulation might allow causality errors to occur, but with sufficient care, a
mechanism to detect and recover from them might instead be employed. These are the two main
approaches used to ensure that the temporal integrity of each logical process remains intact. They are

contrasted in Table 2-1.

Conservative techniques were the first to be adopted and employed in distributed simulation. There are a
number of different algorithms available; two of the most popular conservative approaches are the Null
Message Algorithm (NMA) (Chandy 1979), (Bryant 1977) and the Chandy-Misra Algorithm (CMA)

(Chandy 1981). NMA prevents deadlocking states from being achieved while CMA has a mechanism to

24

detect and recover from them® These algorithms normally require the specification of a rigid
communication topology whereby messages are sent from the outputs of one LP to the inputs of another
through fixed channels. Knowledge of this topology — specifically, the topology’s dependency graph — is
critical in either avoiding or detecting and recovering from deadlocked states and for preventing causality

€Irors.

Optimistic techniques have their origins in the notion of Virtual Time (Jefferson 1985a). Here all events
and LPs have a time stamp that is used to maintain temporal consistency. Suppose an LP at time # receives
arequest to schedule an event at time #<#;,. The LP then must restore its state to time #;.. It must also revoke
any events it issued after time #. The LP can then process all of the events it has for time # and later. The

memory obsolete data occupies is periodically reclaimed in a process known as fossil collection.

The Time Warp Operating System (TWOS) (Jefferson 1987) was a research initiative in the late 1980's and
early 1990's to investigate the performance improvement that could be realized through optimistic
synchronization applied to distributed simulation. There is considerable literature available on the actual
implementation (Reiher 1992, 1990c), debugging and optimization (Reiher 1990a, 1991b), and related

topics (Reiher 1990b, 1991a).

The SODL system described herein makes use exclusively of optimistic synchronization based heavily on
the approach in TWOS. While this may be problematic for some applications, (notably those with a high
degree of coupling between logical processes) these are sufficiently extreme cases that their exclusion
seemed a reasonable tradeoff, especially since other simulation languages (YADDES and APOSTLE, for
instance) are designed to work with either conservative or optimistic approaches. The plus side of this
tradeoff is that the simulation system developer is able to construct a much more loosely coupled
simulation topology (since specification of communications channels are not necessary in optimistic

simulation).

% A deadlock state in a distributed simulation is one whereby, due to a circular dependence of each of the
logical processes, none of them can make any progress. It can be considered a generalization of the Catch
22 problem.

25

This then is context in which we conduct simulation. We have a universe, perhaps the one we all enjoy, or
some hypothetical one, which has a host of systems within it. Some of these systems may exhibit behavior
we would like to better understand. In the modeling process, we make formal behavioral descriptions of
these interesting systems, based on the behavior we either conjecture or observe. We then simulate these
systems to see if our model is an adequate representation of the system we are trying to understand, and
make changes to more closely reflect it if it is not. Once the simulation and the model both adequately
represent the system, we use the simulation to draw new conclusions, allowing us to better understand our

world.

Chapter 3 discusses in more detail the notion of optimistic simulation, and describes in general terms how it

is employed in the SODL run-time system.

26

Chapter 3. Overview of optimistic synchronization

3.1. Overview

The notion of optimistic synchronization came about in the mid 1980s (Jefferson 1982) in response to one
of the criticisms of conservative methods. This criticism was that poorly balanced loads tended to render
many LPs idle while they wait for slower LPs to complete their designated tasks, even when there may not
be any specific dependency between the blocked LPs and those performing computations. While poor load
balancing still adversely impacts optimistic synchronization, it does so only in cases where there is a data
dependency between faster LPs and slower ones. Still, it is this one characterization that distinguishes
conservative from optimistic synchronization; conservative synchronization attempts to avoid causality

errors, while optimistic synchronization attempts to recover from them (Fujimoto 1993).

One of the problems with distributed simulation is that messages in transit between sender and receiver
nodes are not always completely accounted for. These messages in transit can take an arbitrary amount of
time to be delivered, and they may not necessarily be delivered in the order they were transmitted. They

need to be accounted for in any distributed simulation algorithm.

In this chapter, we continue the analysis begun in Chapter 2, directed at the notion of optimistic simulation.
Recall that a distributed simulation has a collection of logical processes LP;, i<N, and a finite number of
states LP(t;) for t4€ T. Logical processes transition from LP{t;) to LP{t;) in response to processing an
event e;(1,, 1), which was generated on LPj(t;). In this case, LP; is the destination logical process, and LP;
is the source logical process of the event. The event processing time stamp, the virtual time at which the
event is actually processed, is #;. Finally, the event generation time stamp, the virtual time at which the
event was actually generated, is t,, We also will use the terms “event” and “message” more or less

interchangeably throughout the remainder of this presentation.
We impose some restrictions on how the various LPs in the distributed simulation may behave:
1) In response to an event e;(%,, t3), LP;(ts,) may change its internal state to LPj(#,), and transmit a

(possibly empty) collection of output events.

2) No LP may directly access the internal state data of another LP.

27

3) Events are time stamped. All events processed by a particular LP must be processed in time stamp
order.

4) All events, e;(t,, 1;), must be scheduled for some future time. That is £;>¢,.
That in mind, we describe the basic Time Warp algorithm (Jefferson 82). We start by describing the
various data structures we will need to facilitate node synchronization on each LP. Table 3-1 lists these

data structures and describes how we will be using each of them.

We need to provide a mechanism for revoking messages that have been transmitted, in the event that this
should become necessary. We therefore introduce the concept of an antimessage. Each antimessage a; (2,
ty) is associated with a particular event, e;{t,, 7). If LP; receives an antimessage for an event, LP; removes

it from its event queue without processing it.

Data Structure Description

This data structure is priority queue’ that places the earliest
event at the top. There should be some mechanism whereby no
two messages have the same chronological value, despite
event p queue(i) having the same time stamp value. This can be accomplished
by appending a unique ID field to act as a tiebreaker in the
event of identical time stamp values. The next event to process
is at the queue’s top.

This data structure is also priority queue that stores inbound
event revocation requests. They are ordered in the same
chronological order as their associated events, with the earliest
antimessage always at the top of the queue.

This data structure, a traditional double-ended queue, retains
copies of the state of LP; for each event that is processed. Later
state_queue(i) states are at the back of the queue, while older states are at the
front. The current state is normally inserted at the back, and
older ones are removed from the front.

This data structure, which can also be implemented as a double-
ended queue, retains a copy of each of the events that LP;
processes. As each event is processed, it is inserted at the back
of the queue. Older events are at the front of the queue.

This data structure can also be implemented as a double-ended
queue. It retains a copy of all messages generated on LP;, with
output_event_queue(i) the latest ones being pushed to the back of the queue, and the
oldest in the front of the queue. They are ordered according to
their generation time, t,, not their delivery time, t4.

antimessage_p queue(i)

processed_event_queue(i)

Table 3-1 Data structures needed for implementing the Time Warp algorithm

7 Priority queues are discussed in more detail in (Cormen 1990), pp149-150.

28

1) The state of each LP/(start_time) is initialized. Bootstrapping events are also scheduled in
each event_p_queue(i). The remaining queues should be empty.

2) While there is an LP; with at least one message to process or there are messages in transit:
3) Push the current state, LP(z), into the back of state_queue(i).

4) While the next message in antimessage_p_queue(i) revokes the next message in
event_p_queue(i), remove and discard the top message of each priority queue.

S) Process the mext event e;(f,, t;) in event_p_queue(i), and push it into the back of
processed_event_queue(i). This results in setting the state of LP; to LP(t;) and sending any
outbound messages to the intended recipient LP’s. A copy of each of these outbound
messages is pushed into the back of the output_event_gueue(i).

6) Upon receipt to LP(t) of the event e; (2, t2), if 1,>1, it is inserted into the event_p_queue(i) to
be processed in chronological order with the other pending events. If 7,<t, then a rollback to

time 1, is performed, and e; (t,, t,) is scheduled with the remaining events.

a. To recover state LP{t,), pop from the back of stafe_queue(i) until the back element
has a time stamp t<¢;,.

b. Remove from the back of processed_event_queue(i) each event ¢;(t,’, 1;°) with time
stamp #,°21,, and reinsert it into event_p_queue(i).

c. Remove from the back of output_message_queue(i) each event e (z,’, ;) that has
generation time stamp t,’2t, and send the associated antimessage a; (t,", ;") to LP;.

7) Upon receipt to LP(t) of the antimessage aiit, t4), if t<t;, then insert a;(t,, ?,) into
antimessage_p_queue(i). If t=t,, then perform the rollback to time ¢, described in 6 a-c above.

8) Periodically update the local estimate of the global virtual time, GVTE;

a. Pop from the front of state_queue(i) all states prior to GVTE; except the latest one
prior to GVTE;.

b. Pop from the front of processed_event_queue(i) all events with delivery time stamp,
t<GVTE,.

c. Pop from the front of output_event_queue(i) all events with generation time stamp,
t,<GVTE,

Figure 3-1 Synopsis of the Time Warp algorithm

We also need to introduce here the concepts of Global and Local Virtual Time (GVT & LVT respectively).

Definition 3-1: Given a logical process LP;, the Local Virtual Time for LP;, LVT(r) at real world time r is

defined to be the time stamp, #4;, of the last event processed e; (2, t4) at or prior to real world time r.

29

Definition 3-2: The Global Virtual Time at any real-world time r is defined as:

GVT(r) = min(u LVT,(r)U MT(rﬂ
' J

G-1)

Where MT(r) is the set of message processing time stamps of messages in transit at real world time 1.

Here, LVT(r) is defined as the local virtual time of LP; at real world time r. Practically speaking, the GVT
computation is fairly complex, though there are a number of algorithms available, notably (Bellenot 1990),
(Fabbri 1999), and (Lin 1989). In all cases, the GVT value that is actually used approximates the real

GVT. This is fine provided it does not overstate the actual GVT value.

We describe the basic Time Warp algorithm in Figure 3-1, using variables described in Table 3-1. There
are a number of algorithms available to perform the GVTE; computation referenced in step 8. We discuss

one such algorithm in section 3.5 below.

3.2. State saving

mosf
Y47
(1417
(1'8Yd7
(§°6Yd7
(Sovrd7
(02¥d7
¥ovq

(a) state_queue(i): LP(f) saved states. LP(20) is
the current state

o ® o o o z g
|l xlzlslz2ls]l=]| g
= ' = w W W - & <3
s Py - : ; p < s
= et = N4 N4 © S
2 e
(b) processed_event queue(i)
o
) il =))
S S « & < o s = z Py =
Y g g 5 = = P = > =, S = -
3 = S = = = » bt [e 2 v
< = =] = : - J in S S]
3 S w - b $ § 3
< —_ i — o w v w W 'Y -
= =z = n n ~ h = 8 = e
= @ = b = £ = =

(c) output_event_queue(i). Each e, ¢, ¢;;, and e;; will be delivered to LP;, LP,
LPy, and LP, respectively for processing at the proper time.

Figure 3-2 Saved state data of sample logical process at time 20

30

When LP; receives a straggler, which is a message with a processing time stamp less than the LVT; at the
time of delivery (Fujimoto 1993), LP;’s state must be restored to a time that makes processing the straggler
temporally consistent. Therefore, there is certain data needing to be saved in order to facilitate this state
recovery. This includes the state of each LP;, all processed events prompting state changes in LP;, and any
events LP; generated because of processing earlier events (Reiher 1990b). Figure 3-2 depicts a typical
implementation of the state saving process. This is somewhat different in the SODL run-time
implementation, where several LPs are aggregated together into what is called an Engine. However, the

same general idea is employed.

Figure 3-2 (a) shows the various LP(f) values as the state of the logical process at time ¢. Each ez, ty) is
an event scheduled for LP; generated at time stamp ¢, and intended to be delivered at time stamp #;. The ¢,
time stamp is only used by LP; to facilitate the event revocation in the rollback mechanism. The 1, time
stamp is used only by LP; to properly order the event. The bold items in the figure 3-2 (a), (b), and (c)

represent the components added to their respective double ended queues after processing e,(5.5, 20.0).

As events are processed and removed from event_p_gueue(i), they are stored in a
processed_event_queue(i). When an event for LP; is processed for a time stamp later than the one that is
currently at the back of state_queue(i), a copy of the back element is added at the queue’s back end, and
the time stamp changed to reflect the event time stamp. The event is processed on the new back element,
and any outgoing events are inserted at the back of output_event_queue(i). The processed event is also

inserted at the back of the processed_event_queue(i) after the LP has completed processing the event.

3.3. Fossil collection

Since events can be scheduled to occur only in the future (per restriction 4 above) we can be assured there

are no events processed before the Global Virtual Time (GVT).

Figure 3-3 reflects the data stored in the LP; depicted in Figure 3-2 after receiving a notification that the

GVT is not earlier than 7.5.

31

Upon notification of an update of the GVT, the process of reclaiming rhemory occupied by obsolete data
can be performed. By restriction 4 above, no event can be sent into the past. Therefore, since the GVT is
the lowest time stamp of all of the LPs in a distributed simulation, no pending events prior to the GVT
remain. This fact allows us to reclaim most of the saved LP internal data with a time stamp prior to the
GVT. Specifically, all members of processed_event_queue(i), e;(t,, t;) where t;<GVT can be removed
from the front of the processed_event_queue(i). This is easy to do since they were entered into the
processed event from the back by their #; value. Similarly, all members of oufput_event queue(i)
generated on LP; where t,<GVT can likewise be reclaimed as no rollbacks can restore the LP to a state with

time stamp prior to the GVT.

—~ o~
| 5| 2|5«
S S — :.3 %
Rtz el =
(a) state_queue(i)
o S
= o T -
s |12 & 5
=~ = o >
N 2

(b) processed_event_queue(i)

Juosf
1z ‘00)"
(17 °07)"2

youq

(c) output_event_queue(i)

Figure 3-3 Result of fossil collection with GVT=7.5
The story is slightly different for the saved state data in the state_queune(i). Since the GVT is 7.5, we need
to be able to recover state data for any time after 7.5. However, the earliest state we have after 7.5 has time
stamp 10.5. This will do us no good if we need to recover state data for time 8.0, should that be necessary.
The solution is to remove saved state data from stafe_queue(i) up to, but not including the last time prior or
equal to the GVT. Having done this, we can now recover the state to any point after 7.5. Since there can

be no state changes in the LP for time stamp values in the range [5.5, 7.5], it will just be LP(5.5).

32

This fossil collection process can serve a second purpose, other than just reclaiming memory. Specifically,
during fossil collection, we can perform any irrevocable activity. Such activity could include writing data

to a log file (or any IO activity for that matter) or allocating or deallocating memory not specifically related

to the synchronization protocol.

3.4. Rollback (state recovery)

Juolf
0Yd7
(1Yd7

(rsYd7
(S'§)d7T
yovq

(a) state_queue(i) : LP(t) saved states. LP,(5.5) is the current state

wosf
(0 ‘12

01°0)%
(1s“0)7e
yovq

(cs 12
(ss‘sya

(b) processed_event queue(i): Events e, (5, 10.5) and ¢, (5.5, 20), which had
been processed earlier were reinserted into event p queue(i).

osf

(1°0)2

(1°0)"%

(1 ‘0ya

(L1s)y’
(zs 1¢)
Sr¢19)ya

(ss‘n)2
(sse°1)
(07 ‘s sya

yonq

(c) output_event queue(i). Events e; (20, 21) and ¢;,(20, 21) were revoked by
sending antimessages a,,(20, 21) and q,,(20, 21) to LP; and LP, respectively.
Figure 3-4 Results of a state rollback on LP; to time 6.0
Given LP(t) and a newly received event ¢ (Z,, {;) is called a straggler any time #;<¢ (Fujimoto 1993). Upon
receipt of a straggler, LPy(t) must become LP(t;) in order to process the new event in a manner consistent

with causality. Rollbacks can also occur when receiving an event revocation, a; (t,, 1) with ;<.
Figure 3-4 shows the effect of a rollback to time 6.0 from the state indicated in Figure 3-2.

Here, we see that all of the processed messages with 1,26.0 were popped from processed_event_queue(i)
and reinserted into eveni_p_queue(i) for processing after the new event. All of the members of
output_event_queue(i) with ,>6.0 were revoked and their associated antimessages were sent to annihilate

them. The members of state_queue(i) with time stamp #>6.0 are also removed and the memory they

33

occupied is reclaimed. The new state, from which we can now process the new incoming message, has

time stamp 5.5

We note that the state saving and rollback mechanisms used in the Time Warp algorithm keep all of the LP
queues State_queue(i), processed_event_queue(i) and output event queue(i) in chronological order
according to their time stamps, ¢, #;, and #, respectively. This makes managing them straightforward,
permitting all operations to take the form of either popping from or pushing onto the back or front of the

respective queues.

3.5. Global Virtual Time computation

Though the Time Warp algorithm makes no specific mention of an algorithm for the Global Virtual Time
computation, it is an integral part of the fossil collection process. Most algorithms used in GVT
computation require that it be done synchronously. That is, all of the LPs need at the same point in real
time to somehow communicate their current LVT with all of the other LPs. This can then be used to
perform the fossil collection described above. This can impact system performance as each LP has to stop
what it’s doing, and wait for the computation to be completed. It then needs to perform the fossil
collection. As a result, the system will periodically pause while all of this is going on. Some of the more
popular synchronous GVT computations are (Bellenot 1990), (Fabbri 1999), (Lin 1989). (Bauer 1992) and
(D’Souza 1994) both proposed somewhat different general asynchronous approaches to performing the
GVT calculation, each with their drawbacks. (Fujimoto 1997) and (Xiao 1995) describe asynchronous

methods specifically geared towards shared-memory multiprocessing systems.

We would like to make an observation about GVT, and try to relax requirements that might otherwise
constrain various methods. We first show that the GVT increases monotonically given all events e;;(t,, £,)

in a distributed simulation, where #;>1,.
Theorem 3-3: let x, ye R, such that x<y. Then GVT(x)SGVT(y). That is, GVT increases monotonically.
Proof: Suppose otherwise. Then there exists x, ye R, such that x<y but GVT(x)>GVT(y). Then at some

time x*e[x, y) there was a rollback on some LP; such that LVTi(x")<GVT(x), or an event ey ;(t,, t;) was

34

generated on LP, where 1,<GVT(x). This second possibility can be dismissed quite simply by noting that
such a case would violate the principle that a message have a processing time stamp strictly greater than its

generation time stamp. In other words, it violates the requirement that f,<t,.

Let us therefore examine the first possibility in some detail. LP, must have received from some LP; an

event e;,(1,, I4) causing a rollback. Let us note that 1,<t,=LVT{(x")<GVT(x) for this event. Now, either LP;
generated e;(1,, tz) before, at, or after real world time x. Let us consider each of these cases separately

L e;(t,, 1) was generated before real world time x. Then it was delivered to LP; after real world

time x, meaning that it was a message in transit during the entire interval [x, x’). Specifically

it was in transit at time x, implying that 7, MT(x). From above we see 1,<GVT(x), and we get

GVT(x)<min(MT(x))<t,<GVT(x) resulting in a contradiction.

1L €,y ;) was generated at or after real world time x. Then we are forced to conclude that
GVI(x)>LVT(x’)=t>t,2LVT{(x)2GVT(x), which is another contradiction.

Hence, the circumstance that GVT(x)>GVT(y) cannot ever arise. B

From here, we note that we can relax somewhat the requirements of the local estimate of the global virtual

time on each LP; without impacting the validity of the Time Warp algorithm.

Theorem 3-4: Given a collection of logical processes, LPgy, LP;, ..., LPy., each with local virtual times
LVTy(r), LVTy(r), ..., LVTy., (r), at some real time r, let GVTE(r) be the local estimate of the GVI(r) on
LP; at real world time r. Then no LP will ever have an unrecoverable causality error provided that

GVTE("<GVI(r).

Proof: Since LVT(r)2GVT(r) for ie (0, 1, ... N-1}, any e;,(t,, t2) generated on LP; at or after real world
time r will have t>t,2LVT(r)2GVT(r). Now e;(t,, t;) will be delivered to LP; at some real world time r+90.
But, until delivery of e;x(t,.t;) is actually performed, it is a message in transit and we get

1>t 2GVI(r+8)>GVTE,(r+3), allowing us to perform any necessary rollbacks on LP;. B

Corollary 3-5: If GVTE(r)>GVT(r) for some i, r, then there is a possibility that an unrecoverable causality

error may occur. Thus, the state of the distributed simulation in such a case is invalid.

35

Proof: Let i be such that GVTE(r)>GVT(r). Since GVT(r) is the minimum of all the local virtual times
and all messages in transit, there is either a j such that LVT(r)<GVTE(r) or a message in transit with time
stamp GVT{(r). It is possible that either LP;, or a message in transit with time stamp less than GVTE(r)

causes (ether directly or indirectly) a roll back to a time prior to GVTE(r). B

An important upshot of Theorem 3-4 is that as long as no GVTE(r) overstates the actual GVI(r) no two

GVTE(r) values need to be the same.

One might be tempted to use these results to develop a token-passing asynchronous GVTE computation.
For instance, consider an algorithm whereby a token is passed around a ring of nodes in a distributed
simulation system. This token contains a payload allowing the receiving LP; to compute GVTE(r). It then
adjusts the payload of the token, and passes it along to LP,1ymean- Each LP; will have different estimates
of the GVT, and at first glance, it would appear that the hypothesis of Theorem 3-4 is satisfied. This is not

the case.

Consider the situation depicted in Figure 3-5. In this case, the GVTE(r) is based upon the state of LP’s at
real world times earlier than 7. It is possible that in the intervening time, some LP; could have had a
rollback to some time LVI{r)<GVTE(r), meaning that GVI(r)<GVTE(r), opening the possibility of an

unrecoverable causality error.

LVTo(ri0)) LVT(ri)
LVT(riqy) LVT\(ri)
LVTy(riz) LVT(ri2)
(a) — LVT values used to (b) — Actual LVT values at
compute GVTE,(r,z) time ry;).

Figure 3-5 Possible unrecoverable causality errors in asynchronous token passing GVTE calculation
This problem is not limited only to a token ring approach, but any GVTE computation that uses data based
upon obsolete LVT values. This explains in part the popularity in synchronous approaches such as
(Bellenot 1990) and (Lin 1989). The problem with most synchronous approaches to GVT computation is

that they require processing to stop on all the nodes in the distributed simulation while the GVTE

36

computation is performed. This has the possibility of adversely impacting performance of the simulation

system.

Several asynchronous algorithms have been suggested, notably (Concepcion 1990), (Bauer 1992) and

(Mattern 1993). We will focus particular attention her upon one of these approached.

(Mattern 1993) suggested coloring LPs either white or red. A white LP sends white messages, and a red LP
sends red messages. All LPs are initially white. The approach is essentially to count the number of white
(red) message that have been sent and received while the color of all the LPs is red (white). Once the
difference between the sent and received messages is zero, a lower bound of the GVT can be calculated by

getting the minimum time stamp that occurred during the collection of white (red) messages.

Mattern provided a formal description of his algorithm as it specifically applied to ring topologies, but
provide no formal correctness proof. We suggest a more general version of Mattern’s formal algorithm,

making no assumption about the simulation topology, and prove its correctness.

Table 3-2 lists the various routines that we use in the general algorithm, as well as a description of their
function. Table 3-3 lists the various data structures and a description of the data they contain. Finally,

Figure 3-6 lists a generalized variation on the original ring-topology algorithm Mattern proposed.

Routine Description

Global Min(x;) | A distributed procedure to return the global minimum of all the values, x; for i<N.
This value is returned to each LP; at the completion of the call.

Global Sum(x;) | A distributed procedure returning the sum of all the values, x; for i<N. This value is
returned to each LP; at the completion of the call.

Synchronize() A distributed procedure to force all of the nodes in the distributed system to start at
the same point in the GVTE computation at approximately the same real world time

Reset Miny() Sets a local variable, #m; to the current L¥VT; on the host making the call.

Get_Min() Returns the minimum LV7T; value that occurred since the last Reset Min() call. This
minimum is adjusted if necessary every time a rollback occurs on LP;.

Table 3-2 Routines used in the asynchronous GVTE computation

Data Structure Description

pc {red, white} | This “color” is toggled between the two possible values between successive
iterations of the algorithm. Each event e, (Z,, ¢;) takes on the color p; at the real
world time it was generated.

sent]{pi] The number of messages sent from LP; with color p; initialized to <0.0, 0.0>.

received)p;] The number of messages received by LP, with color p; initialized to <0.0, 0.0>.

Table 3-3 Data Structures used in the asynchronous GVTE computation

37

GVTE_Computation() is run on a separate execution thread on each LP; during the entire distributed
simulation run. This allows the main simulation engine to continue processing events during the GVTE
computation. Actual implementation can make some modifications to the parameters of the various loops
allowing processing to continue in the main portion of the simulation engine without occupying too much

time in this routine.

GVTE_Computation()

int outstanding // Number of outstanding messages with phase p;
int old p; // Current value of p,, prior to being incremented
Synchronize(); // Make certain all are doing this for the same p,
while(true)
old p, < p, // Pre-incremented value of p; is used in the computation
Reset_Miny) // Get the current simulation time.
pi< (pit1) mod 2 // Pass messages with this new p;.
do

outstanding < Global_Sum(sent[old_p;] - received]old p]]) // Count them
while (outstanding > 0) // Until all messages w/ phase old_p; are received
GVTE; < Global_Min(Get_Min())// Get the current global virtual time estimate

Figure 3-6 Asynchronous GVTE algorithm
The main portion of the simulation engine increments sent{p;] and receivedp;] as it sends and receives
messages with color p;, respectively. At the start of the main loop, we store the current simulation time,
retain the current value of p; in old_p;, and increment the color, p;, In the inner loop, the variable
outstanding will be non-zero until all messages with color old_p; are received. Any rollbacks on LP; to a
time less than the minimum value retained at the Reset_Min() call adjust that minimum to the new, lower

LVT; value.

Theorem 3-6: During application of the algorithm in Figure 3-6, GVTE{r)<SGVT(r) for all r during which

the algorithm is in use.

Proof: When all of the messages with color old_p; are eventually received we have Get_Min,()SLVT(r) for

all i, leading to GVTE(r)=min(Gef_Min;())<min(LVT(r)).

38

We now need to show that the min(Get_Min,())<min(M7(r)). Since all remaining messages in transit
eifte, 1) have color p, they have t>1,2Get_Miny). It follows, therefore, that

min(Get_Min;())<min(MT(r)).

Thus min(Get_Min;())<min(LVT(r)OMT(r))=GVT(r), satisfying the hypothesis of Theorem 3-4 and

ensuring that the algorithm is correct. @

If message acknowledgement is used as part of the communications protocol, the above algorithm can be
slightly modified to explicitly wait until all messages with color old_p; have been acknowledged. This

modification would be in lieu of the summing of the sent,[] and received]] arrays.

39

40

Chapter 4. SODL Run-Time System Architecture

4.1. Overview

Discrete event simulations require that processes change their state in accordance with some sequence of
chronologically ordered events. In the SODL system, these changes are invoked because of receiving a
message. Each message has a time stamp dictating when in the simulation run it is to be processed. The
SODL run-time system is built to simulate a distributed simulation system to demonstrate that the language

can be used in conjunction with optimistic synchronization mechanisms.

The purpose of the SODL simulation run-time system is to ensure that messages are delivered in the proper
order to the proper simulation process. It does this through a modified version of the Time Warp algorithm
discussed in Chapter 3. Whereas thé basic Time Warp algorithm aggregates a great deal of behavior into a
logical process, the implementation of the SODL run-time system disaggregates portions of the algorithm

to provide certain economies of scale, improved granularity control, and sequential mode testing.

Engine Stand

Engine 0 Engine 1 Engine N

—

~ —~ =

s = E s = 5 =) = g
=3 =) =) = = = £ Z Z
) 172} w w wl w 1223 172} v
w) 172 w w w 172 w o o
(] [2 13 Qo v (3 w (3
o (5] (93 (5] 9 o Q Q Qo
= g 2 g 2 = 2 g =
a (=8 o f=5 [=9 (=% [=% o (=9

Figure 4-1 SODL system hierarchy
SODL has two types of user-defined objects, called constructs. Message constructs allow process
constructs to interact with each other. There are a number of other objects in the SODL run-time system
provided with the SODL distribution package. Industrious end-users may change or completely rewrite
this run-time system to meet their particular needs. The overall architecture of the SODL run time system
can be thought of in hierarchical terms. There is an engine stand, which can be thought of as distributed
simulation system for purposes of testing the SODL system. This stand contains one or more simulation

engines, each of which can be thought of as a node in a distributed simulation system. These engines act

41

independently of each other, in a manner similar to nodes in a distributed simulation. Each engine has a

number of processes it controls. This hierarchy is depicted in Figure 4-1.

4.2. Message constructs

Messages provide the means for objects within a simulated environment to communicate with each other.
SODL messages have a designated type, which may be derived from another message type (ala object

oriented inheritance). Figure 4-2 depicts the structure of message constructs.

Message Construct

Message Type Specifier

Destination List

Time stamp

Transmission flag

Identifier

Data Payload

Methods

Figure 4-2 SODL message construct

4.2.1. Message Type Specifier

Each message has an associated type. This type determines how processes receiving the message will react
to it. Since SODL aspires to be an object oriented programming language to some degree, messages can
inherit portions of their functionality from parent messages constructs. Unlike some other languages, (most
notably C++) only single inheritance is allowed. This design consideration was made primarily to simplify
implementation. Messages of type B, derived (either directly or indirectly) from some message type A, are
said to be of type A and B. This abstraction allows additional flexibility in message delivery and

processing. Routines provided in the run-time system can make use of these relationships.
4.2.2. Message destination list

The destination list is determined at run time and need not be the same for any two messages. Each

destination has a unique identifier that acts as an associative address for delivering the message. Users can

42

establish a default recipient list at compile time for a given message. They can, alternatively override or

augment the default recipients at run time.

4.2.3. Message time stamp

In order to ensure that messages are processed in the proper order, each message has a time stamp.
Messages with earlier time stamps will be processed before those with later time stamps. In cases where
two messages with the same time stamp value are encountered, the message identifier is used as a

tiecbreaker. This allows all messages generated to fall into a unique ordering, regardless of the order

generated.

4.2.4. Message transmission flag

The SODL language requires that all possible outgoing messages be declared prior to compiling the source
code files. In certain cases, it may not be desirable to actually transmit all of the messages that could be
transmitted in response to an incoming message. The SODL run-time system provides programmers with a
mechanism to preempt message transmission. They can set the message transmission flag to false to
accomplish this end. The message transmission flag is set by default to true and must be either changed
directly or by overloading the function called to examine the message delivery flag. See Chapter 6 for

more details.

4.2.5. Message identifier

Each message has a unique identifier that allows it to be tracked down in the event of a revocation, and to
provide a complete ordering in the event that two messages have the same time stamp value. This identifier
has two components. The first is the index of the engine instance (see section 4.5 below) where the
message was initially generated. The second is the actual instance count of the message generated on that

engine.

4.2.6. Message data payload

The simulation developer specifies the data payload at compile time. This payload is analogous to the data

members in a traditional object oriented programming language.

43

4.2.7. Message methods

Methods are analogous to the methods found in object oriented programming languages. They are intended

to act on the data members of the particular message instance to which they are associated.

4.3. Process constructs

Process Construct
Time stamp
[dentifier
State Data
Methods
message typeo
Mode 0 /
1
message type,
message typeo P Transmit/Receive Node (0,0) <
- Transmit/Receive Node (0,1) a message type
message type,
Transmit/Receive Node (0,n) message type:
message type; /
< Mode 1 message type,
message type;
§ Transmit/Receive Node (1,0) 7 P| message types
Transmit/Receive Node (1,1) /
/' message types
j~1
Transmit/Receive Node (1,n,)

Figure 4-3 SODL process construct
From the programmer’s perspective, all of the functionality associated with a logical is encapsulated into a
SODL process construct. Each process can send messages and change its internal state upon the receipt of
a message. There are enhancements allowing certain tasks to be performed somewhat easier, namely the
notion of a process mode. Figure 4-3 shows the basic structure of a SODL process. This particular
example shows a process with two modes, but in can in general have any number of them. Each mode has
a collection of transmit/receive nodes. Each of these nodes accepts one message of a stated type (which

implicitly includes all derived types), changes the internal staie data when it receives a message, and

44

produces output messages. There is no linguistic limit to the number of modes, the number of nodes in

each mode, nor to the number of output messages a node can transmit®.

It might seem a little odd that node (1, n;) receives both messages of type 1 and 2., while node (0, 1) can
only handle messages of type 1. Messages are declared as types that can inherit data and methods from a
parent message. If message type 1 is a parent message of type 2, and if node (1, n;) is intended to receive
messages of type 1, then technically, any message of type 2 is also a message of type 1, and node (1, n,)

can process it.

4.3.1. Process time stamp

Each process instance has a time stamp associated with it. This time stamp is changed to the time of the
message that is currently being processed. The process controller (see Section 4.4) uses the process time

stamp to facilitate state saving and recovery.

4.3.2. Process identifier

Each process has associated with it a unique identifier. This identifier is a pair of numbers that correspond
to the process’s owning SODL engine (See section 4.5) and an index for distinguishing between all of the

processes the parent engine controls.

4.3.3. Process state data

State data is analogous to the member data found in an object oriented class definition. This state data has
an associated time stamp. The process is said to have the state of its data elements at the time of its time
stainp. Changes to the state data are considered instantaneous. This leads to the situation where a state
may not be completely up to date if messages with the process’s current time stamp are still pending.
Though the order of message delivery is the same from run to run of the simulation, for practical purposes

developers should not rely on any particular processing order for messages with identical time stamps.

State data should not contain references, since the C++ standard has trouble copying objects with them if

the copy constructor is not explicitly defined. Pointers can be used, but doing so should be done carefully.

® Any limitations stem from the architecture and capabilities of the machine running the simulation.

45

Since the pointer value is copied in a copy constructor, and not the data that is being pointed to, great care
must be taken to ensure that the state of the data being pointed to is consistent, and can be rolled back if it
is dynamic in nature. SODL provides callbacks allowing developers to perform some processing in the
event of a rollback and during fossil collection so that, among other things, data in a pointer may be

corrected and processed if necessary.

4.3.4. Process methods

Methods can be used to perform calculations or modify internal process state data. The SODL engine hides
references to other processes, so these methods cannot generally be called on other process instances, even

instance of the same type.

4.3.5. Process modes

Modes can be thought of as a collection of transmit/receive nodes (described in section 4.3.6) and can be
activated or deactivated independently of each other. Only nodes in active modes can receive messages.
At startup, all of the modes are active. Each process receives a bootstrapping message that can be used to
deactivate modes that are intended to be dormant at the start of the simulation. Alternatively, prior to
actually sending a message to a process, an initialization method is called in each process instance that can

also be used to deactivate desired modes. This is discussed in more detail in Chapter 6.

4 .3.6. Process nodes

Each mode can have a collection of subordinate nodes. Each of these nodes handies exactly one type of
input message, including any messages derived of that type. The node is directly responsible for
processing the message, ensuring that proper updates to the process state are made, and that the data fields
in any outgoing messages contain the proper values. Input messages are passed into the node by value,
instead of by reference. Output messages are passed by reference. The reason for this is that input
messages may be used by other processes, or by the very process currently handling the message. This also
hides data fields from derived message types. Output messages are passed by reference so that they may

retain any changes to them the node may make.

46

4.3.7. Process inheritance

Like messages, process can singly inherit behavior from parent process constructs. There are some
intricacies associated with this practice that make this somewhat more complicated than inheritance in the

traditional object-oriented sense. Inheritance of the process methods and data members is like that in C++.

Modes and nodes are a little different, though. Specifically, modes with the same name across an
inheritance are actually the same mode instance. That is, if process A had a mode M, and a process B
derived from process A also has a mode M, then these are the same mode in each instance. M can be

activated or deactivated within the context of either A or B, affecting its activity state in both contexts.

Nodes also need to have their behavior defined more clearly, since there is no analogous feature in other
object-oriented programming languages. Mainly, any nodes in active modes can have process messages of
their input type. Overloading a node in a derived process construct will not prevent the message from
being delivered to the parent’s context. For instance, in the example above, assume that M has a node
named N in both processes A and B. In this case node N in both A and B will process the message. The
programmer does not explicitly pass the message to the parent class; the run-time system will do this
implicitly. The reason for this is that, even though the name of the node may be the same, the output

messages may differ, and for ease of implementation, this approach was implemented.

4.3.8. Fossil collection in the process instance

When the process controller performs fossil collection, it is safe to produce any output that may be pending
for the state at its designated time stamp. SODL provides the ability for developers to overload the
JossilCollect method; all output should be performed in this method. The remaining SODL run-time
system ensures that fossil collection occurs in the proper process order, so that output appears in its proper

sequence as well.

4.4. Process Controllers

A process controller manages many of the Time Warp specific functions associated with each process.

Process controllers ensure that the state is saved prior to processing messages that will change the time

47

stamp of the process it controls, and when directed to do so, performs fossil collection and rollbacks. It
also acts as a conduit for sending messages to and from its process. Figure 4-4 shows the general structure

of a process controller and how it receives and transmits messages to and from the process.

4.41. ldentifier

Each process has a unique identifier, which we discussed in section 4.3. The process controlier has an
identifier with a little additional information, including typing data that makes possible screening inbound

messages from only specific types of messages.

Process Controller

Identifier

State Queue
back

Output Messagey

Output Message,

process state(t,) \

/ process state(t.1) ‘

process state(ty..)

NN

Input Message —-L)

Output Message,

Output Message;

Process Controller Receiver

Process Controller Transmitter

process state(tn.m)

Output Message,

7

front

Figure 4-4 Process Controller message flow

4.4.2. State queue

The state queue holds the process states for specific points in time. The back element of the state queue is
called the current state. Due to the Time Warp algorithm as implemented in the SODL system, the process
states are in descending order of their time stamp value from the current state at the back and earlier states
toward the front. States are saved onto the back of the queue, and they can be removed either from the

back of the queue (in the case of a rollback) or from the front (during fossil collection).
4.4.3. Process controller message receiver

Upon receipt of a message delivery to the process controller, the time stamp of that message is compared

with that of the back element. There are three cases, with which to contend:

48

L Time stamp of incoming message < Time stamp of current state: It should not normally
happen that a message is received with an earlier time stamp than the current state.

II. Time stamp of incoming message > Time stamp of current state: Create a new current
state by copying the old one onto the back of the state queue and changing its time stamp
value to that of the incoming message. The new back element is now the new current state.
The process controller also registers a fossil collection event with the controlling engine so
that this new state can be reclaimed later. We now deal with the message as if it has the same
time stamp as the current state, in case III below.

IIL. Time stamp of incoming message = Time stamp of current state: The message is passed to
the current state, which can make modifications to its internal data and generate outgoing
messages.

4.4 4. Process controller message transmitter

Requests for message transmission originate in the process instance associated with the controller. Qutput
messages are preprocessed and screened. The process controller will examine each output message and
reject transmission of any that have their transmission flag set to false or any that have an empty destination
list. Also, since we requires output messages from a node to have a greater time stamp value than their
current time stamp, each outgoing message time stamp is set to a value slightly greater than the current time

stamp if this condition is not satisfied.

4.4.5. Rollback

The SODL engine managing the process controller may periodically direct a rollback to a time ¢. All states
saved in the state queue that have a time stamp not earlier than ¢ are removed from the state queue. Since
they have been placed into the queue in ascending order of their time stamps, this is simply a matter or
removing the back element from the queue until the queue’s back element has a time stamp strictly less
than ¢t. There is no easy way to revoke the fossil collection scheduled for this rollback, so when we are

notified that one must take place for any rolled back states, the request is ignored.

4 .4 6. Fossil collection

Some intricacies associated with fossil collection bear mentioning. First, in order to perform a rollback to a
time ¢, a state with time stamp prior to time ¢ must remain. That is, we must always have a state remaining
that is prior to the current GVT. Secondly, since we are performing operations such as output during the

fossil collection phase, we need to ensure that we also perform this output in time stamp order. These

49

considerations led to an arrangement whereby fossil collection was conducted in two phases. Each fossil
collection event the process controller performs has an associated time stamp, which is the time stamp of
the process state that is obliged to perform some form of output. Any.states with earlier time stamps have
their memory reclaimed, but the one that performs the output is retained until the next cycle of fossil

collection for that process controller. This is depicted in figure 4-5.

State Queue State Queue
back back
S(tm) S(t m)

S(pr-nv2) S(tnne2)

S(tm-nﬂ) S(’m-nﬂ)
S(’m-n) Output - S(t,,,_,,)
Sfront Sfront

State Queue

back

S(tlll)

S(t m-n+2)

Output - S(f 1)

front

Prior to fossil
collection

After first round of
fossil collection

After second round
of fossil collection

Figure 4-5 Fossil collection cycle in a SODL process controller
This approach allows the fossil collection to be conducted in a manner consistent with SODL system
requirements. By performing the output at the designated fossil collection time, we guarantee that the
output is produced in the proper time stamp order. By retaining the state that had just produced the output

until the next fossil collection round, we provide for the possibility of rolling back to that state.

4.5. Engines

Engines aggregate multiple processes and provide some improvements in memory management and
granularity control over the way a simulation run. All messages addressed to a particular process are
passed first to the engine controlling that process and placed in an event queue for scheduling. The engines
also retain sodl::AntiMessage instances for all messages that have been produced in subordinate processes
so that those messages can be rolled back in the event that becomes necessary. The engine structure is
depicted in Figure 4-6. All processes in an engine are considered to have the same time stamp value,

though in practice this need not occur. This time stamp value is that of the current message being

50

processed or, if no message is being processed, the time stamp value of the last processed message. Upon
receipt of a message from another engine with a time stamp that is less than the current engine time stamp,

a rollback to the new message time stamp is required of all subordinate process controllers.

SODL Engine
Fossil Collection Schedule
Jossily
Engine Jossil,
Lfr]
Clock
. Sossil, S
g il =
Z E
S =
[~2 <4
o =~
R= o
&b £
& . 2
Pending Message Queue Process Controllers wm
message,, processy
—> message, —P» process, P
mesSage min processy
Antimessage Queue Processed Messages Output Messages

=) (=) (=)

antimessage, messagey,., antimessage,

antimessageq+1 message., antimessage v

antimessageq+n, message.p antimessage .,

Figure 4-6 SODL engine structure
Each engine has an associated node number. This node number is unique among all of the other engines
that may be in a SODL system. This number corresponds to the first part of the identifier for processes

controlled on the engine, and of messages originating on the engine.

51

4.51. Local clock

The clock provides a convenient central way of checking the current simulation engine time stamp, and
determining the time stamp of outgoing messages, should the user-defined portion fail to provide an
adequate value. Earlier implementations of the clock had a real-time mode that allowed messages
processing to occur at some rate proportional to the real world flow of time. This was found to be an

unnecessary feature, though the general capability remains if developers wish to restore this capability.

4.5.2. Pending message queue (event queue)

The pending message queue prioritizes pending messages so that the next message in the queue has the
lowest time stamp value of any others in the queue. For that reason, this is implemented as a standard

library priority_queue (Josuttis 1999).

4.5.3. Antimessage queue

The antimessage queue stores antimessages are associated with messages in the pending message queue.
The order restrictions on the two queues are identical, so if a message has been revoked, it can be checked
with the top element of the antimessage queue when it is considered for delivery to its destinations. If the

antimessage annihilates the message, both are removed from their respective queues and destroyed.

4.5.4. Processed message queue

Each message is inserted into the back of the processed message queue after the engine has processed it. In
the event of a rollback, elements from the back of the processed message queue can be removed and
reinserted into the pending message queue as necessary. During fossil collection, messages can be
reclaimed from the front of the message queue. The messages in the processed message queue are ordered

by their time stamp value.

4.5.5. Output message queue

During message transmission, a copy of the outgoing message’s associated antimessage is retained in the
event that a rollback is necessary. These messages, unlike those in the processed message queue, are not

ordered by their time stamp values, but by the time stamp of the process state that created them (i.e. their

52

creation time). The reason for this distinction is that during a rollback, any messages that need to be
revoked are done so because the process that created them became invalid. We are not interested in the
delivery time, but in revoking them because since they never should have been created in the first place.
Thus, they are inserted into the output message queue in the order of their creation. During rollback, the
antimessages are removed from the back of the queue and transmitted. During fossil collection, they are

removed from the front and their memory reclaimed.

4.5.6. Process controller array

Each engine has a collection of processes it owns. Each of these processes has its process controller. The
engine does not actually have any direct manipulation of the processes themselves, but can interact with the
process controllers. Pointers to these controllers are stored in a standard library vector. Each process can
be uniquely addressed by a pair of numbers, the index of its owning engine, and the index in the vector that
has the pointer to the process controller. This is in fact the basis for the identifier in the process controllers

and their processes.

4.5.7. Fossil collection schedule

The engine needs to keep track of any new states that have been created by the owned process controllers
so that when fossil collection occurs, those states can be reclaimed in a chronologically correct sequence,
ensuring proper formatting of the output. A fossil collection schedule is implemented as a priority_queue

that has the earliest scheduled fossil coliection event at the top.

4.5.8. Engine message receiver

Messages destined for a process controlled on some engine must first be passed to the engine’s receiver. If
the incoming message has a time stamp ¢, less than the current clock time stamp ¢, then the engine initiates
a rollback to the message time stamp. If the incoming message is an antimessage, it is inserted into the

antimessage queue; otherwise it is placed in the pending message queue.

53

4.5.9. Engine message transmitter

Any of the process controllers owned by an engine can request a message to be transmitted. The engine
does not consider the destination of the message at this point, but blindly forwards the message to the
engine stand (see section 4.6 below) for the local node in the distributed simulation for delivery to the
proper engines. An antimessage for the outgoing message is retained in the event a rollback requires its

revocation.

4.5.10. Engine advancement

Periodically, the engine stand will instruct each engine it controls to process a message. When this occurs,
the engine removes from the top of the pending message queue the first message that does not have an
antimessage waiting for it in the antimessage queue. All message-antimessage pairs are removed and
eliminated. The message is then sent to the controllers for all of the destination processes the engine owns.
Once that is completed, the message is then inserted in the back of the processed message queue in case it

needs to be reinserted into the event queue due to a rollback.

4.5.11. Rollback

An engine rollback is Ijerformed any time it receives an incoming message with a time stamp ¢, less than
the time of the local clock. When this occurs, each process controller the engine owns performs its
rollback, as described in section 4.4.5. The engine must also rollback portions of its data structure as well.
This is accomplished by reinserting into the pending message queue all of the messages in the processed
message queue with time stamps less than or equal to 7, Any antimessages in the output message queue
with time stamps less than or equal to 7, are transmitted so that their associated messages can be revoked as

well.

The fossil collection schedule remains unchanged. It is difficult and time consuming to weed out fossil
collection events made irrelevant because of the rollback. When they are processed, the process controller

can easily recognize that they have been the result of a rollback, and they are ignored.

54

4.5.12. Fossil collection

Fossil collection is broken into two phases, known as incremental fossil collection and gross fossil

collection.

4.5.12.1. Incremental fossil collection

Incremental fossil collection is geared primarily towards the process controllers. The engine stand during
the overall fossil collection process will query the engine as to the time of the event in the fossil collection
schedule. When certain conditions are satisfied (see Section 4.6) the engine will be allowed to perform an
incremental fossil collection, allowing the process state with the lowest time stamp value remaining to be
fossil collected (see section 4.4). This will ensure that from the engine’s perspective all of the output

governed by the engine is generated in the proper order.

4.5.12.2. Gross fossil collection

Gross fossil collection takes place after incremental fossil collection at the direction of the engine stand,
and is for reclaiming all of the engine’s data with a time stamp value less than some #. Any messages in
the processed message queue or the output message queue with time stamps earlier than #; are removed

from the backs of their respective queues, and their resources are reclaimed.

4.6. Engine Stand

Engine Stand

Message Forwarder GVT Estimator
5] 6 f
& € ——
g L Engine List
= [
= E Engine 0 E
= 5 £ AR
] 4] . s =
'5' - Engine 1 =]
L > =
= £
Q
=]
3

H Engine N /

Figure 4-7 Engine stand structure

55

Each node in the distributed simulation has a unique engine stand, depicted in Figure 4-7, which acts as the
primary controller for all of the engines managed on that node. It was introduced primarily as a means to
implement the Time Warp algorithm without introducing problems associated with actually distributing the
system. It proved useful in this regard in tracking down errors within the implementation of Time Warp in

the SODL system.

It is retained because its value does extend beyond simply debugging purposes in SODL system
development. Specifically, it provides a mechanism for testing and optimizing possible distributions of
processes across engines, while keeping at bay network errors that might occur specifically in a fully

distributed implementation.

4.6.1. Idle listener interface

The idle listener interface provides a mechanism for the view manager (see section 4.8) to control the
engine stand. This control comes in two forms. The first is a request to perform any initialization required
to get the simulation correctly configured for startup. This can include establishing initial bootstrapping
messages, and process state initialization. The second form of control allows the engine stand to progress
in the simulation. This is actually implemented by allowing each of the engines under control of the engine
stand to advance. The view manager is notified if no pending messages remain so that it can end the

simulation run, if that is its behavior.

4.6.2. Engine List

The engine list contains a reference to all of the engines in the simulation. Only certain engines are
actually controlled by the engine stand that owns it in a distributed simulation. This provides an easy

method of making certain that process instantiation is done consistently across the distributed simulation.
4.6.3. Message forwarder

The message forwarder sends and receives messages between engine instances. All messages are

forwarded from the simulation engine to the sodl::EngineStand::stand instance. From there, the

56

distribution list is queried, and copies of the message are sent to each of the sodl::Engine instances with

processes listed as recipients.

4.6.4. Local virtual time (LVT) calculator

The LVT calculator keeps track of messages that have been processed and acknowledgements of messages
transmitted to other engine stands. It then keeps track of the local virtual time for them engine stand, as

defined in Chapter 3.

4.6.5. Global virtual time (GVT) estimator

The GVT estimator receives periodic requests for input into a global virtual time calculation. The GVT
calculator gets the current LVT from the LVT calculator, and passes that on to the message forwarder to be
provided for the GVT computation. At the end of the GVT computation, each engine stand receives the
newly estimated GVT and passes it from the message forwarder to the GVT estimator. The GVT estimator

updates the local estimate of the GVT, and conducts fossil collection.

4.6.6. Fossil collection

As in the engines, engine stand fossil collection is conducted in two phases. Upon an update of the local

estimate of the GVT, incremental fossil collection is performed, foltowed by gross fossil collection.

4.6.6.1. Incremental fossil collection

The incremental fossil collection involves polling all of the locally controlled engines for their next
scheduled fossil collection event. These are sorted and processed in time stamp order up to the GVT.
Upon completion of an incremental fossil collection event on engine e, the engine stand again polls e for its
next fossil collection event. In this way, all of the fossil collection events prior to the GVT are performed

in proper time stamp order on all the engines the stand controls.

4.6.6.2. Gross fossil collection
After completion of the incremental fossil collection up to the new local estimate of the GVT, each engine
the stand controls is given the opportunity to perform gross fossil collection to rectaim memory occupied

by obsolete data directly under the control of the engine instance.

57

4.7. Message Passing Interface (MPI)

The SODL run-time system was intended to work with the Message Passing Interface (MPI), a standard
library linkable with C, C++, and Fortran programs (Gropp 1998, 1999a, 199b). It is primarily used in
general distributed programming, not specifically distributed simulation. However, certain features make it
a useful tool in distributed simulation:
e It has a standard to which all implementations must adhere. It has also been widely used for other
purposes, meaning that most implementations are reasonably mature and stable.

e It remotely starts up all of the nodes in the distributed simulation with the need for the simulation
operator to do this manually.

e It has been ported to multiple platforms. In particular, it can operate heterogeneously with a
variety of Unix platforms. It has also been ported to Microsoft Windows NT, but it does not

interoperate with MPI on Unix platforms.

e Since the library has been ported to multiple platforms SODL run-time systems using MPI can
easily be ported to those platforms with little or no code changes.

This aspect of the simulation system was not implemented prior to this writing, though it is hoped that
derived work will establish a fully distributed implementation of the SODL run-time system using MPI for

network communication.

4.8. View manager

The View Manager is a configurable subsystem that is designed to facilitate graphical output from a
standard API. It controls exactly one sodl::IdleListener instance (of which sodl::EngineStand is a
subtype). View managers have a start method that, when called starts the simulation running. This
includes initializing the idle listener (which in turn initializes all of the simulation components) and
incrementally stepping the simulation (by processing some non-zero number of pending events). SODL
comes with two view managers, though developers can easily write new ones to work with API’s not

currently supported.

4.8.1. Text view manager

The Text view manager provides no graphics support. It is intended for producing output only to stdout or

log files. Upon starting the view manager, it immediately calls the initialization routine in the idle listener.

58

It then calls the idle method in the idle listener until no messages remain in the simulation system to be

processed. When that happens, the text view manager returns control to main.

4.8.2. GLUT view manager
The GLUT view manager provides a basic interface with the GL User Toolkit (GLUT) API. During

initialization, any simulation objects that own a gvm::View instance registers it with the controlling GLUT
view manager. Any user input events are then forwarded to the appropriate view. Multiple views can be
added to the GLUT view manager, and it will ensure that the user inputs are sent to the proper display
controller. GLUT provides a mechanism whereby during idle times in the graphics subsystem, a callback
can be made to a static method. This mechanism is used to allow the simulation to process some pending

events.

The GLUT view manager requires extensive additional support in the form of SODL processes and
messages in order for developers to make use of it. This interface is described in more detail in Chapter 9.
To summarize, there is a SODL process associated with each graphics object under the management of a
GLUT view manager. These views may be distributed across a network, or they may be consolidated on
one host machine. Inside each view is a scene graph that corresponds to the hierarchy of graphics
processes in the distributed simulation. Messages can be sent to these SODL processes causing some state
change in the receiving process. These changes are then forwarded to all of the views that have elements in
their scene graph associated with the process. Upon receipt of these messages, the view generates a
message and places it into a queue for processing during the fossil collection phase. It is only at the fossil

collection phase that these changes to the scene graph are actually committed.

59

60

Chapter 5. SODL Parser Usage

5.1. Overview

The SODL parser is a software tool that translates SODL construct files into a collection of C++ source
code files. It also creates a makefile for compiling the generated C++ source code. This makefile is
intended for use with GNU make 3.79. Generated C++ source code files can be compiled using the GNU

C++ Compiler (GCC version 2.95.2).

5.1.1. Cautionary notes

Programmers developing under Win32 operating systems will need to obtain a copy of the GNU make
utility (version 3.79 or later). They are strongly advised to obtain the latest version of Cygwin (available at
http://sources.redhat.com/cygwin/) and use that as a development environment. I personally recommend

Emacs for Win32 (which is available at http://www.gnu.org/software/emacs/windows/).

In the event that a distributed simulation system is eventually produced with MPI, SODL will be restricted
to running in a distributed mode under Unix systems until a robust version of MPI is produced to work in

the Cygwin environment; as of this writing, there is no such implementation.

5.2. Installation

The parser is distributed as a tarred and bzipped source code with a variety of makefiles that can be used to
build the parser for a variety of platforms. The makefile may be edited to direct the executable build to a
specific location if the default settings are not satisfactory. Currently the following platforms are supported
(though if I've been a good programmer, others should be equally well supported without major changes to

the parser source code):

Platform (Compiler) Makefile name Build command line
Cygwin (GCC) src/Makefile.Cygwin make cyg
Linux (GCC) src/Makefile.linux make Inx
Solaris (GCC) src/Makefile.solaris make sol

Table 5-1 Methods for making the SODL parser

Installation and compilation instructions are in Figure 5-1.

61

1)

2)

3)

4

5)

Download the latest version of the software and copy it to a desired location.

tar -xvjf sodl-x.x.xxx.tar.bz2 where x.x.xxx is the version number of the
SODL distribution. If your version of tar does not support this form of decompression, use

bunzip?2 sodl-x.x.xxx.tar.bz2
tar -xvf sodl-x.x.xxx.tar

cd sodl-x.x.xxXx
make platform-abbreviation

make clean

Figure 5-1 SODL Parser (sp) installation instructions

5.3. Directory Structure

There are some makefiles available to perform various tasks for managing the contents of the directory

structure.
Makefile command Function
Make build Builds SODL parser and sample programs; the default platform is Cygwin.
Make clean Removes garbage files created during the build process.
Make fullclean Removes garbage files and executables created during the build process.

Table 5-2 Makefile commands

Upon extraction, the there will be a number of directories along with the make files to build the executable.

5.3.1. ./bin

The executable is placed in this location after it is built. Add this to your path or move sp to a place in your

path.

5.3.2. ./config

Contains configuration files for various platform and option combinations. The platforms are those listed

above, and the options involve the view manager and whether or not the simulation is to run in a distributed

mode.

62

5.3.3. ./doc

Some HTML-formatted documentation is available here. It is largely portions of this dissertation converted

to HTML for portability.

5.3.4. ./object

Object files generated during the build process are places here. They can conveniently be removed by

using the “make clean” after building is complete.

5.3.5. ./sample
Directory Contents

./sample/xxx/bin Location of the binary executable afier the build is complete

/sample/xxx/build | Location of the C++ files generated by the SODL parser

/sample/xxx/object | Location of the object files generated by the compiler during the build process

/sample/xxx/plan | Location of the SODL source files which are used to generate the simulation
Table 5-3 Sample simulation system directory structure

Make command line What it builds

make all samples

make glut battle, bouncel, bounce2, brigadel, hierarchy

make text brigade2, ping, ringl, ring2, simplel, simple2, simple3

make dist relayl, relay2, relay3, relay4, relay5, relay6

make battle battle

make bouncel bouncel

make bounce2 bounce2

make brigadel brigadel

make brigade2 brigade2

make ping ping

make relayl relayl

make relay2 relay2

make relay3 relay3

make relay4 relay4

make relay5 relay5

make relay6 relay6

make ring1l ringl

make ring2 ring2

make simplel simplel

make simple2 simple2

make simple3 simple3

Table 5-4 Make command line arguments for building demonstrations
The sample directory contains a number of SODL sample programs and a collection configuration files for
various platform/option combinations. It includes the makefiles needed to manage the subdirectory

contents. Each demonstration directory has a number of subdirectories that are used to build the samples.

63

These directories are described in table 5-3. Table 5-4 describes the shows the command line make

arguments for build some or all of the demonstrations.

The next few sections provide brief descriptions of each of the demonstrations. They are more fully

described in Chapter 9.

5.3.5.1. ./sample/battle
The battle demonstration is an autonomous tank battle simulator. Two opposing forces each with 25 tanks
and 1 command post start out in some initial configuration and attempt to destroy the opposing force’s

command post.

5.3.5.2. ./sample/bouncel
The bouncel demo simulates a collisionless system of particles in a closed container. It uses the GLUT

view manager to display the simulation state.

5.3.5.3. ./sample/bounce2

This appears essentially the same thing as bouncel above, but it is done with fewer messages

5.3.5.4. ./sample/brigadel
This is another GLUT view manager demonstrator that shows the progress of a military brigade performing

some task. It also performs a great deal of output to stdout indicating which components are doing what.

5.3.5.5. ./sample/brigade2
This simulates the same thing as the brigadel demonstration above, but without the GLUT view manager.

It produces only textual output.

5.3.5.6. ./sample/hierarchy
Hierarchy is a single process GLUT view manager demonstration. Its notion is somewhat similar to the

brigade demonstrations, but it does things in an apparently more orderly manner.

64

5.3.5.7. ./sample/ping

Ping simulates a token being bounced between two processes. It produces only textual output.

5.3.5.8. ./sample/relayl
Relay sets up a multi-engine simulation with two processes. One transmits a token to the other, which is
then repeatedly bounced between them until the user stops the simulation. It was intended to act as a

simple test of multiple engines without the possibility of a rollback ever occurring.

5.3.5.9. ./sample/relay2

This simulation is intended as a stress test of the rollback mechanism in the SODL run time system. For
every message delivered, two are generated, so this simulation will eventually run out of memory and cause
an abnormal termination. Each process resides on different engines and, upon receipt of a message
transmits two messages, one to itself, the other to the partner process. Each of these messages has a

random time stamp, which may cause a rollback to occur on the other.

5.3.5.10. ./sample/relay3

This simulation system is also intended to stress test the rollback mechanism and memory management of
the SODL system. One controller process owns 1000 subordinate processes distributed 10 each on 100
engines. At startup, the controlling process sends a message to all of the subordinate processes. Upon
receipt of such a message, each of these subordinates sends a message to a random subordinate at a random

time.

5.3.5.11. ./sample/relay4

This simulation consists of a controller process, two subscription processes, and four child processes. The
child processes each reside on their own engine. Each child subscribes to one of the two subscriptions
processes. Messages sent to a subscription process are forwarded to all of its subscribers. The simulation
starts when the controller sends a message to each of the subscriptions. That message is then forwarded to
all of the children processes. Upon receipt of a message from the subscription, each child process sends a

message to a random subscription, a message to unsubscribe from a random subscription, and a message to

65

subscribe to a random subscription. Each of these messages has a random time stamp. Like relay2 above,
this normally will create more messages each cycle than are consumed, and it therefore will eventually

terminate abnormally due to lack of memory.

5.3.5.12. ./sample/relay5
Relay5 has three processes, a source, a relay, and a sink. Each process resides on a different engine.
Messages periodically originate in the source and are sent to the relay. The relay forwards a message to the

sink, which sends no messages.

5.3.5.13. ./sample/relay6
Relay6 is another test of the rollback mechanism. There are two processes on different engines, one
process makes fast progress, and the other makes slower progress but at specific points in time, sends a

message to the faster. This causes rollbacks to occur at predictable points in simulation time.

5.3.5.14. ./sample/ringl

This demonstration has a controller and ten ring elements arranged in a ring topology. Upon receipt of a
message, each ring member transmits a message to the next member in the ring. The simulation is started
when the controller sends a message to the first element in the ring. The ring topology is actually giued

together with a subscription similar to that described in relay4.

5.3.5.15. ./sample/ring2
This behaves much the same way as ringl above, except that when started, the controller broadcasts a
message to all of the child processes. This results in each process processing messages in parallel (from a

virtual time perspective) rather than sequentially as in ring].

5.3.5.16. ./sample/simplel
This is a simple test of a single process that sends a message to itself upon receipt of one. It does this 100

times before stopping.

66

5.3.5.17. ./sample/simple2
This behaves like simplel, except that it does not stop. It was used to check for memory leaks in the main

simulation engine.

5.3.5.18. ./sample/simple3
Simple3 behaves like the ping demonstration mentioned earlier, except that the messages between the two

processes stop only when the user terminates the program.

5.3.6. .Isrc

This directory contains the source code required to build the SODL parser.

5.3.7. .template

This directory contains the source code for the SODL run-time system. This includes a number of SODL
" construct files for the GLUT view manager, and, in the ./template/gvm subdirectory, the actual graphics

engine that the GLUT view manager uses for graphics display.

5.4. Command Line Options

Once the parser is installed, you can run it by entering ’sp’ followed by a collection of flag values and the

root process name.

sp [-abaseDir] [-bbinSubdir] [-ccfgDir] [-ddisplay] [-ibldSubdir] [-Iplatform] | -mmode]
[-oobjSubdir] [-ppinSubdir] [-ttmpltDir] [-v] RootProcess

Option Meaning [Default Value]
-a Specify base directory for the others below [./]

-b Specify the binary subdirectory, where the executable will be generated [bin/]
-C Specify configuration file subdirectory [$(SODLHOME)/config/]
-d Specify either 'Text' or 'GLUT display type [Text]

-i Specify intermediate build subdirectory [build/]

-1 Specify platform name [platform used in building the parser]

-m Specify simulation mode, either 'single' or 'dist’' [single]

-0 Specify object file subdirectory [object/]

-p Specify plan file subdirectory [plan/]

-t Specify template location [($SODLHOME)/template/]

-v Turns verbose mode ON [OFF]

Table 5-5 Command line options for sp

67

All subdirectories except tmpltDir and ¢fgDir are relative to baseDir. RootProcess is expected to be a

process construct file in the planSubdir directory (relative to the baseDir value).

For user projects, the default directory structure is illustrated in Figure 5-2.

baseDir

|
| 1 | |

binSubdir buildSubdir objSubdir pinSubdir

Figure 5-2 User project default directory structure

5.5. Configuration Files

The SODL parser uses a configuration file to specify various parameters for building the final product.
These configuration files will differ from each other based upon the platform and compiler in use. The
location of the configuration file defaults to $(SODLHOME)/config. Users can specify their own
configuration file location using the -c option in the parser’s command line invocation. The actual file
name that the parser will look for in that directory is mode.display.platform where the —m option specifies
the mode value, -d specifies the display component, and -1 specifies the platform. Some examples are

shown in Table 5-6.

Command Line Configuration file used
sp -lcygwin ... $(SODLHOME)/config/single.text.cygwin
sp -ctemp -llinux -dglut ... Jtemp/single.glut.linux
sp -mdist —lcygwin -dtext ... $(SODLHOME)/foo/single.text.cygwin

Table 5-6 Configuration file specification in the sp command line
This mechanism enables end user to specify their own graphics library and user interface, should they
(perhaps wisely) opt out of the rather limited one provided with the SODL system. It also provides the
means by which an end user can write their own simulation engine with which the code sp produces would

interface.

The configuration files have key/value pairings that the parser and code generator can use to produce
proper Makefiles. Here is a list of the keys and a description of how their values are used. These pairings

take on the form key-name = "key-value".

68

Table 5-7 describes the key/value pair settings available to users to specify how the eventual product is

built. Figure 5-3 has examples of some configuration files distributed with the SODL system.

When sp is run, it produces a number of files. There are several C++ source code files written to the
directory specified —o option in the sp command line. There is also a Makefile written to baseDir used to
actually build an executable simulation. A typical build will have one call to sp to produce the C++ files

and the Makefile, followed by a ‘make’ to produce the final executable.

Key Name Value Meaning

Location of the executable (relative to baseDir) produced as a result of complete SODL
BIN . . .

build process.(same as the —b option in the sp command line)
BUILD Directory (relative to baseDir) to write the C++ files the SODL parser produces (same as

-i in sp command line).
CC Compiler command line invocation to use to compile C++ files.

Command line flags for the compiler. It is required to have as its last argument the
CCFLAGS . .
option for naming the output file.
DISPLAY Display type (same as ~-d option in SODL parser command line)
EXEEXT Specifies the file extension for the executable image (required for Win32 to be .exe)
LD Linker command line invocation to use to link the object files.

Linker command line options and flags. It is required to have as its last option the flag
LDFLAGS .
for naming the output file.
MODE Simulation mode (same as the —m option in the SODL parser command line)

Directory in which the compiler places the object files after compilation (same as -0 in
OBJECT .
SODL parser command line).
OBJEXT File extension for the object files. It is normally “.0”

Directory (relative to baseDir) where the root process declaration is located (same as -p
PLAN . -
in SODL parser command line).
REMOVE Command for removing files (#m for Unix shells, de/ for MS-DOS like command shells)
TEMPLATE Directory (relative to baseDir) where the SODL simulation engine and support source
files are located (same as -t in SODL parser command line).

Table 5-7 Configuration file key/value descriptions

69

OBJEXT = ".o"

EXEEXT =""
CC = vngvv
LD= "g'H'"

CCFLAGS =" -DLINUX -ftemplate-depth-64 -c -1/ust/include -O2 -0 "
LDFLAGS = "-L/ust/X11R6/1ib -lglut -IMesaGLU -IMesaGL -IXext -1X11 -Im -IXi -IXmu -0 "
REMOVE = "rm -f"

a - $(SODLHOME)/config/dist. GLUT.linux

OBJEXT =".0"

EXEEXT=""

CC= "g+—+—"

1LD= v|g++u

CCFLAGS = "-DLINUX -ftemplate-depth-64 -O2 -c -0 "
LDFLAGS="-0"

REMOVE = "rm -f"

b - $(SODLHOME)/config/dist.Text.linux

OBJEXT =".0"

EXEEXT=""

cCc=" g "

LD=" g SR

CCFLAGS = "-DLINUX -ftemplate-depth-64 -I/usr/include -O2 -c -0 "

LDFLAGS = "-L/usr/X11R6/lib -lglut -IMesaGLU -IMesaGL -1Xext -1X11 -lm -IXi -1Xmu -0 "
REMOVE = "rm -f"

¢ - $(SODLHOME)/config/single. GLUT.linux

OBIJEXT =".0"

EXEEXT ="

CC= ug+_+_n

1LD= ||g++||

CCFLAGS = "-DLINUX -ftemplate-depth-64 -O2 -c -0 "
LDFLAGS="-0"

REMOVE = "tm -f"

d - $(SODLHOME)/config/single.Text.linux

Figure 5-3 SODL configuration files for Linux platform

70

Chapter 6. SODL Language Structure

6.1. Overview

The Simulation Object Description Language (SODL) is designed to provide an enhanced event driven
response representation for controlling entity activity in distributed discrete event simulations. It is a
purely event driven language, and has some features of more traditional object oriented languages such as
inheritance. SODL object descriptions are represented as a collection of stimulus/response handlers. That
is, upon receipt of some stimulus, a simulation object will produce a possibly empty collection of internal
and external responses to that stimulus. Here, stimuli are incoming messages, internal responses are state

changes, and external responses are outgoing messages, as depicted in figure 6-1.

Outbound Message 0

Outbound Message 1

Inbound Message ~ p—=-——P» Simulation process

Outbound Message n

Figure 6-1 Depiction of the stimulus/response notion of a SODL process
This is not the case in SODL. The only mechanism provided for simulation object interaction is message
passing between different instances. Methods are provided for individual instances to manipulate their own

internal state.

6.2. Approach

SODL is a completely event driven language. It is heavily based upon C++, and relies upon many of the
constructs of that language. Source code in SODL is passed through a parser and generates a collection of
C++ files. These files are then compiled using a standard C++ compiler. Though the overall structure of
the programming language is different from C++, the internal code executed when handling events is

entirely C++. The build process is depicted in Figure 6-2.

71

SODL code p——em—pp C++ code —————P» Object Code j|—————» Executable
SODL C++ Linker

parser (sp) compiler

Figure 6-2 SODL project build steps
This approach is similar to others that have been employed for distributed simulation systems. In
particular, both YADDES (Priess 1990) and APOSTLE (Wonnacott 1996) use this approach of translating
a simulation specification from their respective languages, translating these user files into C and C++ files
respectively, and then using standard compiling and linking tools to create an executable. It has the benefit
of allowing systems to be ported to other platforms without having to write platform dependent binary

code.

6.3. Constructs

A construct is the basic building block of SODL. In many aspects, a construct is roughly analogous to a

C++ or Java class. Figure 6-3 shows the basic form of a construct.

{ construct-type:construct-name [(parent-construct) |
5 |

{ construct-definition }

Figure 6-3 Basic construct form
Constructs are defined in files with a specific extension. Valid construct types and their associated file

types are listed in Table 6-1.

Construct File

. D . .
ype FExtension escription

Defines a message that can be passed between object instances. It can

message .msg contain data and method descriptions. Messages have an associated
delivery time.
Defines behavior of a simulation object instance. It can receive and send
process .proc messages, it has state variables, as well as method descriptions. It also

contains stimulus/response definitions for handling messages.

Table 6-1 SODL Basic construct types
Optionally, constructs can inherit some functionality from a parent construct. Inheritance takes its form by

enclosing the parent construct type into a set of parentheses following the declaration. Some constructs can

72

optionally contain no functionality of its own, or extensive definitions of internal data, methods, and

additional construct dependent definitions.

6.3.1. Message constructs

SODL. files with .msg extensions contain message constructs. These message constructs are the means by
which various processes within the simulation communicate with each other. They can have internal data,
called a payload, and methods that act upon that payload. Sp creates two C++ files for each message it
processes. The first is a header file, and the other is a source code file. Details on these files are described
in Chapter 7. Entries for coxﬁpiling them are placed into a Makefile for building the final executable. They

are explored in depth in section 6.7. Sample message constructs are depicted in Figure 6-4.

{message:generic;}

a — generic.msg, a simple message with no data or methods.

{message:child message(parent_message);}

b - child_message.msg, a simple message with no data or methods, with inheritance

Figure 6-4 Sample message constructs

6.3.2. Process constructs

{process:simple;}

a — simple.proc, a simple process with no data, metheds or modes.

{process:child_process(parent_process);}

b — child process.msg, a simple process with no data, methods or modes, inherited from parent.

Figure 6-5 Sample process constructs
SODL files with .proc extensions contain process constructs. A process construct has internal data, called a
state, and methods that act upon that state data. Unlike message constructs, process constructs also have
modes, which in turn have nodes. Each mode can be activated and deactivated independently. Each node
can receive a message of fixed type, which changes the internal state of the process, and transmit messages.

Nodes can only receive messages when their parent mode is active.

73

From one process construct, sp creates a pair of files to define in C++ the functionality of the process
within the simulation engine. Details on these files are described in Chapter 7. Sample process constructs

are depicted in Figure 6-5.

6.4. Import declarations

In order to make use of more than one construct, the programmer must reference them from within the

body of all referencing files. This is done through an import directive. Import directives take on the form

depicted in Figure 6-6.

{ import [construct-type |

construct-namel [,construct-name2 [, ... |]

Figure 6-6 Import directive specification
Import directives should be located at the top of a source code file, prior to the file’s construct definition.
There are two varieties of imports, the first imports SODL constructs for use within the importing

construct, the other imports non-SODL declarations, such as C++ header files.

6.4.1. Importing SODL constructs

{import message {root message} }

{message:start_sim(root_message);}

a — start_sim.msg; Imports message:root_message it to be used in the messages body.

{import message {start sim, SetView} }
{import process {View3D} }

{process:root_process(View3D);}

b — root_process.proc; Imports message:start_sim and message:SetView, as well as
process:View3D. process:root_process inherits functionality from process: View3D.

Figure 6-7 Sample import directives for message and process constructs
For importing SODL constructs, the construct-type in the import directive must match the construct-type in

each of the files associated with the construct name. That is, when importing messages, the keyword

74

message is used as the construct-type, and similarly for importing process constructs. This is necessary
because different construct types are used differently in SODL, and the distinction in important. Figure 6-7

illustrates how some simple constructs import other constructs.

Message and process imports must be in either the planDir or the tmpltDir, as defined by the sp command

line parameters.

It’s not normally useful for message constructs to import process constructs. However, the language does
provide for this possibility, even though any attempt to declare a process within a message produces an

error when sp is run.

6.4.2. Importing non-SODL files

{import {<stdlib.h>, <stdio.h>} }

{message:start sim(root message);}

a — start_sim.msg; Imports stdlib.h and stdio.h for use in the start_sim message.

{import std {<vector>} }

{process:root_process;}

b — root_process.proc; imports the declaration for the std::vector class.

{import gvm {Node} }

{process:View3D;}

¢ — View3D.proc; imports the declaration for the gvm::Node class.

Figure 6-8 Sample non-SODL construct imports
Import directives also allow importing C++ header files with a way to allow compilation with external C++

source code. Figure 6-8 illustrates some examples.

Here Figure 6-8a imports the stdlib.h and stdio.h header files into the header file produced for the
message:start_sim construct. This form (omitting the construct-type) should be used for any includes

which are in the C++ global namespace.

75

Figure 6-8b imports the header file for the std::vector<T> class. In this case, we use this form for

including headers for declarations in the s¢td namespace.

Finally, figure 6-8c imports the header file gvm/Node.h, which must reside either in planSubdir/gvm or in
tmpltDir/gvm. It will also compile into the final executable the file gvm/Node.cxx. Here any declarations

should be in the gvm namespace.

6.5. Member Variable Declarations

Message and process constructs both allow declaration of member variables. Member variables are

declared inside the construct declaration, and take on the illustrated in figure 6-9.

[namespace::]data-type:variable-name [[| [size]] [: initial-value] ;

Figure 6-9 SODL construct member variable declaration
From this we can declare variables of variety of types, including arrays, each of which can be initialized

with a certain value.

6.5.1. Basic data types

Data Type Description

bool Boolean value (takes one of the values {true, false})

byte 8-bit unsigned character value. Defined by typedef unsigned char byte;

char 8-bit signed character value

double Double precision floating point value

float Single precision floating point value

int Single precision signed integer value

long Double precision signed integer value

mtype A Message type value. Defined by typedef sodl::Defs::MessageType sodl::mtype;
rand A random number stream. Defined by typedef sodl::Random sodl::rand.

rocess A handle to a process. Defined by typedef sodl::ProcessHandle sodl::process;

_profile A profiling tool class. Defined by typedef sodl:: ProfileTools sodl::profile.

ptype A Process type value. Defined by typedef sodl::Defs::ProcessType sodl::ptype;
uint Single precision unsigned integer value. Defined by typedef unsigned int uint;
ulong Double precision unsigned integer value. Defined by typedef unsigned long ulong;

Table 6-2 SODL construct member variable basic types
Member variables can take on any of the basic types listed in table 6-2. Each of these data types has
exactly the same properties as the C++ data types of the same name, or typedef as the case may be. In fact,

they are instantiated as those very same C++ data types.

76

Table 6-3 provides some sample declarations and their meaning within the SODL language.

SODL Declaration Description

int:x; Creates an integer value named x with an undefined initial value.
double:y(0.0); Creates a double precision value named y initialized to 0.0

float:z[3](1.0); Creates an array of 3 floating-point values, each initialized to 1.0.

char:x{]; Creates an empty array of characters. Initializer cannot be used in this case.
long:y[4]; Creates an array of 4 uninitialized long integers with undefined initial values.

Table 6-3 Sample SODL member variable declarations

{
message:start
{ // message:start
int:x; // Single precision integer
double:y(0.0); // Double precision floating-point number initialized to 0.0
float:z[3](1.0); // Array of 3 floats each initialized to 1.0
} // message:start
}
a — member variables constituting the payload of message:start instances
{
process:root
{ // process:root
char:x[]; // Uninitialized array of characters of unspecified length.
long:y{4]; // Uninitialized array of 4 long integers
} // process:root
}

b — member variables constituting the state of process:root instances

Figure 6-10 Sample member variable declarations in SODL constructs
Arrays are implemented using the C++ Standard Template Library’s std::vector<T> making them
somewhat more flexible than the traditional C-style technique of using a pointer. Pointers can still be
declared if programmers explicitly state the namespace (i.e. the global namespace). This technique is

covered in section 6.5.2. Some sample variable declarations are provided in figure 6-10.

6.5.2. Extended data types

You can alternately create structures or other data types in a C++ namespace (including the global
namespace). By explicitly specifying the namespace, programmers can provide instances of any variable

type that could be instantiated in a C++ program. Any structures in namespaces (including the global

77

namespace) need to be retrieved through an import directive. Some sample variable declarations are shown

in Table 6-4.
Declaration Import Needed Description
. . . std::set<double> instance
std::set<double>:x; {import std {<set>} } named x, uninitialized,
e " . . std::string instance named vy,
std::string:y("Hello") {import std {<string>} } initialized to "Hello" .
An array of 4 GLenum 's
GLenum:mode[4](GL_POLYGON); | {import {<GL/glut.h>} } named mode, initialized to
GL POLYGON.
An instance of gvm::Node*
gvm::Node*:gr node(NULL); {import gvin {Node} } named gr_node, initialized to
NULL,

Table 6-4 Sample extended data type declaration

As in the standard data types, arrays are instantiated as std::vector<T>.

6.5.3. Process constructs as data members

It is also possible to declare processes as variables within process construct declarations. These

declarations can take on either of the two forms shown in Figure 6-10.

When a process is declared within a process construct, it is important to note that the variable associated
with the process declaration is only a handle to the actual process instance, and not the instance itself. No
methods or internal data can be accessed through this handle. The handle acts as an address for message
delivery, and for filtering incoming messages. It does not have any type information associated with it,

though a typed handle can be resolved to gather that information.

When the first form in figure 6-11 is used to declare a process, an actual instance (or collection of them in
the case of arrays) of the type specified by the construct name field is created. The simulation engine
specified in the node-distribution field will then manage the activities of its instances. This form can only

be used in process construct declarations, and not within message constructs.

construct-name:variable-name [| size |] | : node-distribution 1 ;
process:variable-name [[] | [size }] ;

Figure 6-11 Process member variable declaration

78

The second form allows the variable to act as a placcholder and does not actually create any process
instances. Instead, an empty handle (or an array of them) is created which allows local storage of
references to arbitrary process instances. This form can be used in either process or message constructs.

Some sample process declarations are listed in Table 6-5.

Declaration Import Needed Description
ball:b[1000]; {import process {ball} } :arlrr?eyd gf 1000 handles to process:ball instances
Node3D:n; {import process {Node3D} } | Handle to a process: Node3D named n.
process:shapel}; Uninstantiated and unspecified process handle array.

Table 6-5 Process construct declarations
Process instances are statically assigned to a specific simulation engine for the duration of the simulation
run’. The node-distribution field can be used to specify which simulation engine controls each of the
instances declared in the construct. When the node-distribution is omitted for a process declaration, the
construct will be instantiated and controlled in the engine where the construct declaring the process is

controlled.

engine-node-number
< element-node-equation >

Figure 6-12 Forms for specifying controller simulation engine
The two forms for specifying the node-distribution are shown in Figure 6-12. The first form can be used
either with single instances or on arrays or processes. It specifies that the process instance (or all of them in

the case of an array) be controlled by the engine-node-number.

The second form allows for different elements of an array of processes to be controlled by different
simulation engines. This second form allows general C++ code which, when evaluated, produces an
unsigned integer value, to be placed between angle brackets. There is also a macro substitution for the
characters ‘@’ and ‘#’. The ‘@’ character evaluates to the index in the array of the process. The ‘#’
evaluates to the total number of elements in the array. Each element is then assigned to the engine to which

its element-node-equation evaluates. Some examples are listed in Table 6-6,

° There is no process migration in the current SODL simulation engine, though there is nothing to preclude
this feature from future implementations.

79

Process declaration Description

A new process: View3D instance is created on simulation
engine 3.

An array of 200 process:Node instances is created on
simulation engine 10.

An array of 10000 process:Simple instances. Engine
i%100 controls simple[i].

View3D:view:3;

Node:nodes[200]:10;

Simple:simple[10000]: @%((long) sqrt(#));

Table 6-6 Engine specification for process declaration
One final note here is that message constructs cannot have as data members explicitly typed process

declarations. That is, only the second form in figure 6-10 is allowed within a message construct.

6.5.4. A note on references and pointers

Because of certain constraints associated with the Time Warp algorithm, C++ references, although ignored
during the initial processing of SODL files (i.e. with sp), may cause problems with C++ compilers. This
stems from the fact that copying class instances containing as member variables references causes some
(perhaps all) compilers to complain without explicit declaration of the copy constructor. The decision to
forgo this declaration (for performance concerns) has made it necessary to likewise forgo the use of

references.

Pointers may be used in lieu of references, though they are stylistically and functionally inferior to
references in C++. Still, even though permitted, their use should generally be eschewed. That’s not to say
that there is no use for them; a pointer was used for the GLUT view manager as a means of allowing a
process to reference the same view instance regardless of its timestamp. This provided a significant
performance improvement while retaining a suitably generalized mechanism for producing graphical

output.

Stepping back to consider the implications of a pointer in a general SODL environment, one sees that any
uses of a pointer must be atemporal in their nature when defined in terms of a process construct, and highly
questionable in terms of a message construct. In the case of a message construct, a pointer really has no
meaning since the destination of the message may be a process instance located on a different host
machine. In the case of a process construct, only the pointer is copied to each process instance during the

state saving portion of the Time Warp algorithm; the data that the pointer points to is not copied.

80

Therefore, unless arrangements are made to reallocate data at each of these temporal transitions, all process
instances associated with a particular process (i.e. the same process at different points in time) point to the

same memory location and can interact with the data in that memory location atemporally.

6.6. Method Declarations

Both types of constructs can also declare methods. For messages, these methods behave the way they do in
most object oriented programming languages. That is, a programmer can call a method defined within a
message construct declaration. However, in process construct, since both messages and processes only
have handles to other processes, there is no way to call the methods of another process. The reason for this
is that a process may be instantiated on a remote simulation node, and not directly accessible to the local

process instance. Methods may be declared as indicated in figure 6-13.

method: method-name(access-specifier; return-type; | variable-specifier; [variable-specifier; [... 11])

{
}

method-body

Figure 6-13 General method form
The access-specifier is one of {public, protected, private}. It tells the parser what sort of access to the

method is allowed. The meanings are analogous to the respective C++ keywords.

The return-type is simply a C++ data type or any of the data types listed in Table 6-2. Any types not listed
in Table 6-2 need to be prefaced with their C++ namespace identifier, including any types defined in the

global namespace (in this case they need to be prefaced with “::")

Method parameters are defined just like member variables, as described in Figure 6-9. They also require
that any non-standard data types be prefaced with the identifier for the namespace in which they were

defined.

The method-body is nothing more than some C++ code that performs the desired function of the method.

This code is cut from the SODL program and pasted directly into the resulting C++ source code files

Method names must be unique within the process or message in which they are declared.

81

message:start
{ // message:start
double:x[10]; // Uninitialized array of 10 doubles
method:getX(public; double; uint:i;)
{ // method:getX(public; double; uint:i;)
return (i<x.size()) ? x[i] : 0.0; // Return x[i] if i is in [0, x.size())
} // method:getX(public; double; uint:i;)
method:setX(public; void; uint:i; double:v;)
{ // method:setX(public; void; uint:i; double:v;)
if (i<x.size()) x[i]=V; // Set x[i] to v if I is n the proper range
} // method:setX(public; void; uint:i; double:v;)
method:init(public; void;)
{ // method:init(public; void;)
for (int i=0; i<x.size(); ++i) x[i}=0.0; // Initialize all elements of x to 0.0
} /I method:init(public; void;)
} // message:start

Figure 6-14 Sample methods
A sample method declaration for a message construct is presented in figure 6-14. Process constructs handle

methods in exactly the same way.

6.7. Messages

{ message:message-name[(parent-message) |
5 |

{ message-definition}

Figure 6-15 Message construct form
Messages are packets of information passed between process instances and provide the only mechanism for
inter-process communication. Each message has a source process and a collection of destination processes.
They flow from the source process to the processes in the destination list. Figure 6-15 shows the general
form of a message construct. Figure 6-16 shows how the messages flow from source to destination in

detail.

82

The message-name is a unique type identifier for the message construct being declared. All message
instances have as their type one of the Defs::MessageType enumerators, Defs::SMT_message-type. The

parent-message allows for inheriting the data members and methods of the parent-message message type.

Sending process

l Controller receiver [—J»{ Receiving process

Process Controller
transmitter Controller receiver |—J» Receiving process
Engine transmitter Controller receiver |—J» Receiving process
Engine receiver Controller receiver —J» Receiving process
Engine Stand Engine receiver | Controller receiver —P» Receiving process

transmitter

Engine receiver Controller receiver —P» Receiving process
Controller receiver —JP» Receiving process
Controller receiver Receiving process
Controller receiver = Receiving process

Figure 6-16 Message flow from sending process to receiving processes
Messages contain a collection of system-defined parameters, and possibly a user-defined payload and
collection of methods. The message-definition is the user-defined portion of the message definition and

consists of these member variables and methods declared as indicated in sections 6.5 and 6.6 respectively.

In addition to the user-defined portion of a message, there are a number of system-defined methods and

member variables.

6.7.1. System-defined message member variables

The system-defined member variables allow users to customize certain aspects of message delivery.
Though these variables should be manipulated through the provided accessor functions described in section

6.7.2.

83

The member variables in Table 6-7 are declared as protected (except for genTime, which is private) and

non-static.

Message

. Description
member variable ‘P

This is the list of destination processes for the message. destination_list is a
typedef of std::map<ulong, std::set<ulong> >.

double:genTime Simulation time at which this message was generated.

message:me A unique identifier for the owning message instance.

Engine node number controlling the message instance. This may be different
from the engine node number where the message was actually generated.

The user can, at compile time specify a collection of destinations for the
bool:preempt(false) | message. If preempt is set to true, the message is not sent to those destinations.
Any destinations added during the handling of the message are retained.

This is shorthand for the source process of this message. source first is the node

destination_list:dest

ulong:node

process:source in the distributed simulation managing the source process. source.second is the
specific index of the source process.

double:time Simulation timestamp for message delivery.

bool:fx(true) The user can set #x to false to prevent message transmission. #x defaults to true.

Table 6-7 System-defined message member variables

6.7.2. System-defined message methods

Access to the member variable listed in Table 6-7 should be performed through the member functions,
rather than direct manipulation of them. Table 6-8 provides a list of useful system-defined message

methods, some of which can be overloaded to change their behavior.

Each of the methods can be overloaded in a message construct declaration, though the only two methods

where this serves any clear purpose are init and getTX.

In the case of init, the default behavior does not do anything; it is an empty function. However, some
initialization of member data may not easily be initialized at the location of its declaration. The init method

is provided as a means to address that shortcoming.

The getTX function can be overloaded to provide a means to test certain conditions that will either permit

or refuse transmission of the message.

In all cases of method overloading, users should ascertain whether they desire the default behavior of the
parent construct to be an aspect of the child construct’s behavior. If so, calls to these parent construct

versions need to be explicitly made from within the construct method of the child construct.

84

Message method Description

method:addDest(public; void; process:p;) Adds p to the list of destinations.

method:addDest(public; void; std::vector<process>:p;)

Adds pfi] to the list of destinations,
i<p.size()

method:clearDest(public; void;)

Clears the message's destination list, and
sets preempt to true.

method:getGenTime(public; double;) Returns genTime to the calling routine.
method:getID(public; sodl:: Handle;) Returns a copy of me to the calling routine.
method:getNode(public; long;) Returns node to the calling routine.
method:getSource(public; process;) Returns source to the calling routine.
method:getTime(public; double;) Returns time to the calling routine.

method:getTX(public; bool;)

Returns true if and only if #x is true and the
destination list is not empty. It can be
overloaded to check for additional criteria
for message transmission.

method:gefType(public; mtype;)

Returns the message type to the calling
routine.

method:gefTypeName(public; std::string;)

Returns a string representation of the
message type to the calling routine.

method:init(public; void;)

An initializer that is called immediately
after message generation. It can be used to
perform specific initialization.

method:isPreempted(public; bool;) Returns preempt to the calling routine

method:isType(public; bool; mtype:t;)

Returns true if and only if the message
instance is of type (or a subtype of) ¢.

method:setPreempted(public; void; bool:p;) Sets the preempt flag to p.

method:setTime(public; void; double:z;)

Sets time to ¢. This is adjusted during
message transmission to ensure that it
occurs at some time after the message
generation time (genTime).

method:sefTX(public; void; bool:v;) Sets the #x flag to v.

Table 6-8 Common system-defined message methods

6.7.3. System-defined messages

Message name

Description

message:Antimessage

Antimessage instances are paired with message instances and saved on the
simulation engine that owns the process that is the source of the message.
An Antimessage is transmitted when a rollback causes the engine to revoke
messages that have previously been transmitted. When a message and its
associated Antimessage are combined, they annihilate each other, ensuring
that the original message is never delivered.

message: EndSimulation

EndSimulation messages are time stamped with the end simulation time
(1e307) and are intended to be delivered to all simulation processes by the
time the simulation is complete. This has the affect of setting the system
clock of each engine on an engine stand to the end simulation time when it
has no messages remaining to process

message:StartSimulation

Each process in the simulation receives a StartSimulation message when
the simulation begins. This is time stamped with some time prior to 0
(defaults to —1). This allows individual processes to perform some last
minute inijtialization and set up prior to actually beginning the simulation
run and as a bootstrapping device.

Table 6-9 System-defined messages

85

A number of messages are used within the run time system to perform various functions. Users defined
processes can, in some instances receive these messages. Each is defined in detail in the following
sections. Additional messages are defined for the GLUT view manager, and are discussed in more detail in

Chapter 9. These system-defined messages are listed in Table 6-9.

6.7.4. Message Handles

Each message has a message handle, me, containing identifier information. This is a sodl::MessageHandle
instance (which has a typedef to message) and contains the index of the engine where the associated
message was generated, and the message instance count for that message. Each message generated has a
unique message handle. Users should not modify these values, as it may cause problems with message

revocation.

6.8. Processes

Process can be thought of as a self-contained package of state information that responds to incoming
messages. The process will change its state information and send new messages in response to an
incoming message. Messages are processed in time stamp order. The process takes on the time stamp

value of the last message it processed.

{ process:process-name { (parent-process)]

9

{
}

process-definition

Figure 6-17 Process declaration syntax
Processes are isolated message handlers. They are unable to communicate with each other directly, and
must rely exclusively upon message passing to perform this function. Process declarations have the form
specified in Figure 6-17. The process-name is a unique type identifier for the process class being declared.
All process instances have as their type one of the Defs::ProcessType enumerators, Defs::SMT_process-
type. The parent-process allows for inheriting the data members and methods of the parent-process

process type. The process-definition is the user-defined portion of the process definition. It consists of

86

member variable and method declarations as described in section